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Abstract
Cyber-physical systems (CPSs), as cruise control systems,

involve life-critical or mission critical functions that must

be validated. Formal verification techniques can bring high

assurance level but have to be extended to embrace all the

components of CPSs. Physical part models of CPSs are usu-

ally defined from ordinary differential equations (ODEs) and

reachability methods can be used to compute safe over-

approximation of the solution set of ODEs. However, ad-

ditional constraints, as obstacle avoidance have also to be

considered to validate CPSs. To meet this need, we propose

in this paper a framework, based on abstract domains, for

solving constraint satisfaction problems where the objects

manipulated are described by ODEs. We use a form of dis-

junctive completion for which we provide a split operator

and an efficient constraint filtering mechanism that takes

advantage of the continuity aspect of ODEs. We illustrate

the benefits of our method on a real-world application of

trajectory validation of a swarm of drones, for which the

main property we aim to prove is the absence of collisions be-

tween drone trajectories. Our work has been concretized in

the form of a cooperation between the DynIbex library, used

for the abstraction of ODEs, and the AbSolute constraint

solver, used for the constraint resolution. Experiments show

promising results.
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1 Introduction
CPSs often require the verification of dynamic properties

linked either to their internal functioning or to the interac-

tion with the physical environment in which they evolve.

Previous work [6] has shown that the Abstract Interpreta-
tion framework [8] can be used for formal verification of

hybrid systems and highlighted the interaction between the

discrete and the continuous parts of a system. Verification of

properties on such physical systems begins with their mod-

eling and the study of their evolution. They are generally

described by ODEs expressing the dynamics of the system

and their interactions with their environment. Solving such

equations is a hard task and a numerical analysis is generally

necessary to compute an approximate solution (e.g., using
Euler or Runge-Kutta methods [5]). Furthermore, the numer-

ical analysis obtained must be sufficiently precise to allow

the verification of additional safety properties (e.g., absence
of collision between trajectories). In this paper, the formal

verification of such properties is considered.

Classic approaches for approximating the continuous dy-

namics of hybrid systems use Taylor model-based flow-pipe

constructions [7, 30] to compute over-approximation of the

reachable states of hybrid systems starting from some ini-

tial states. Another technique is the use of step-wise func-

tions [4] which consists in an abstraction of the continuous

functions by considering small time steps. In both cases, over-

approximations are generally being computed using some

https://doi.org/10.1145/3427762.3429453
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numerical domains, such as intervals, octagons [21] or con-

vex polyhedra [11]. However, when additional constraints on

the systems must be respected, the problem becomes more

difficult as not only the reachability space for each ODEmust

be computed, but we must also ensure that every point in

these spaces respect the constraints.

In this work, we propose a two-step approach for the

verification of these properties. The first step consists in

the over-approximation of the physical systems described by

ODE, and the second consists in the resolution of a constraint

satisfaction problem about the solutions of these ODEs. The

idea of mixing techniques from Constraint Programming

and Abstract Interpretation is promising and has been ex-

ploited both for constraint solving [27, 28] and program

analysis [22, 29]. The present work is based on the abstract

solving method introduced in [27]. The challenge is twofold:

first, we have to define a representation capable of taking

into account the particularities of the ODE, i.e., their topo-
logical and temporal aspects, in order to be able to efficiently

solve the problems. Second, our techniques must be scal-

able: in order to have precise ODE solutions to avoid errors

due to approximations, time variable is aggressively subdi-

vided which results in solutions consisting of a large set of

abstract elements. Several abstract domains exists for the

handling of sets of abstract elements, namely powerset ab-

stract domain [14] or disjunctive completion [9, 18], but, to

our knowledge, none has been adapted yet to a constraint

solving framework as in [27].

Previous work has focused on the resolution of constraints

involving ODEs, as in [12] or in [13] in which the authors

extend the iSAT algorithm with safe numerical integration

of ODEs as constraint filtering mechanism. Also, in [15], the

authors propose a slightly adapted filtering algorithms ap-

plied to constraints that handle ODEs. More recently, [19]

focused on multi-physics dynamic problems and proposed a

Multiple-ODE filtering algorithm, and [2] proposed a frame-

work that is able to deal with a wide class of problems based

on logical combination of high-level properties, involving

ODEs. The present work differs from previous ones in sev-

eral ways. First, these works are largely based on interval

analysis, while our framework based on abstract domains

allows the natural management of more complex represen-

tations (zonotopes, polyhedra, etc.). In addition, we incorpo-

rate within our structures properties of ODEs, such as their

chronological and their contiguous aspects, which allows us

to have more efficient operations and, to our knowledge, has

never been done yet.

This paper is organized as follows: section 2 introduces

physical systems and the formal definition of their abstrac-

tions as ODEs. Section 3 recalls definitions about constraint

programming in general and the use of abstract domains to

solve continuous problems in particular. Section 4 details

two new abstract domains for constraint solving, namely

the sequence abstract domain, and the tree abstract domain.

Section 5 shows an example application of our method on a

realistic example, and section 5.1 demonstrates the efficiency

of our abstract domains on a benchmark. Finally, section 6

summarizes our work and discusses its perspectives.

2 Abstraction to handle physical systems
First, we need to define an abstract domain to handle physical

systems. A physical system can be modeled in the sense of

an ODE and the computation of their reachability set with

the solution of an initial value problem with ODE (IVP-ODE).

The domain of intervals is well suited for this purpose and

has been studied extensively over the last years [6, 20, 26].

2.1 Abstraction with boxes by reachability
We now recall the definition of an IVP-ODE with a set of

possible initial conditions:




ẋ = f (x(t)) (ODE Constraint)

x(0) ∈ X0 ⊆ R
n , (initial conditions)

t ∈ [0, tend] .

(1)

The function x(t) is the state depending on time t . The so-
lution of an ODE is a function x(t) which satisfies the con-

straint on x(t) and its derivative specified by function f .
The solution of an IVP-ODE must also satisfy the initial

condition. Classical hypotheses are considered to ensure

the existence and uniqueness of solutions of eq. (1). For a

given initial condition x0 ∈ X0, the solution when it exists

is denoted x(t ; x0). Instead of a single initial condition x0,
a set X0 of initial conditions is used, for example, to model

some (bounded) uncertainties. The solution is then a set of

functions, the concrete domain.

This solution cannot be computed in general. The goal

of a validated (or rigorous) numerical integration method

is to characterize the set of functions satisfying eq. (1), in

the form of the values this set of functions can reach with

their associated time instants: {x(t ; x0) : ∀x0 ∈ X0,∀t ∈
[0, tend]}, the abstract domain. A convenient way to access

those values is using the abstract domain of intervals which

uses interval analysis to compute an over approximation of

this set [20, 24, 26].

Interval Analysis. When dealing with some computa-

tion involving sets of values, interval analysis [25] is a

method designed to produce a sound over-approximation

of the computation. Hereafter, an interval is denoted [x ] =
[x ,x ] with x ⩽ x and the set of intervals is IR = {[x ] =
[x ,x ] | x ,x ∈ R, x ⩽ x }. In order to deal with interval func-

tions, an interval inclusion function also known as interval

extension of a function can be defined.

Many interval extensions of functions can be definedwhen

they verify the fundamental theorem (see [24]). We can cite

the natural extension [25] which replaces the operations on

reals by their interval counterparts using interval arithmetic.
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Another interval extension is the mean value extension [25]

which linearizes the function around its mean value.

2.2 Validated Numerical Integration of physical
systems

The goal for a validated numerical integrationmethod is then

to compute the set of solutions of the IVP-ODE in eq. (1),

i.e., the set of possible solutions at time t given the initial

condition in the set of initial conditions X0:

x(t ;X0) = {x(t ; x0) | x0 ∈ X0}. (2)

A validated numerical integration scheme using set-

membership framework aims at producing the solution of

the IVP-ODE that is the set defined in (2). It results in the

computation of an over-approximation of x(t ;X0).
When considering the set of initial conditions as a box

[x0], the use of the interval technique framework for eq. (1)

makes possible the design of an inclusion function for the

computation of an over approximation of x(t ; [x0]) defined
in eq. (2). We denote this inclusion function [x ] (t ; [x0]). To
build it, a sequence of time instants t1, . . . , ts such that t1 <
· · · < ts and a sequence of boxes [x1] , . . . , [xs ] such that

x(ti+1; [xi ]) ⊆ [xi+1], ∀i ∈ [0, s − 1] are computed. From

[xi ], computing the box [xi+1] is a classical 2-step method

(see [26]):

Phase 1 compute an a priori enclosure [x̃i ] of the set

{x(tk ; xi ) | tk ∈ [ti , ti+1] ,xi ∈ [xi ]} such that

x(tk ; [xi ]) is guaranteed to exist and is unique,

Phase 2 compute an enclosure of the solution [xi+1] at
time ti+1.

A box [Xi ] is the Cartesian product of the time interval

[ti−1, ti ] and the state interval [x̃i ] containing all the values
the state can reach in the time interval [ti−1, ti ].

The next section is dedicated to the handling of this set of

trajectories.

2.3 Abstraction of boxes with disjunction of linear
constraints

The solution of an IVP-ODE which is given as a set of timed

boxes in the form {([t1] , [x̃1]), . . . , ([tend] , [x̃end])} can easily

be transcribed as a disjunction of constraints since each

couple ([ti ] , [x̃i ]) corresponds to a quantified proposition:

([ti ] , [x̃i ]) ≡ (∀t ∈ [ti ])(∃x ∈ [x̃i ])(x(t) = x) (3)

or defined as a constraint over the variables t and x:

([ti ] , [xi ]) ≡ (t ∈ [ti ]) ∧ (x ∈ [xi ]) (4)

where t ∈ [ti ] means [ti ] ⩽ t ⩽ [ti ] with [ti ] and [ti ] the

lower and outer bound of [ti ] respectively. Eventually, the
abstraction of the set of trajectories can be modeled as a

disjunction of all the constraints from eq. (4) since at each

time t ∈ [t0, tend] the state x(t) must verify exactly one of

these constraints.

2.4 Tool: DynIbex
The tool used for abstraction of ODE’s solutions is

DynIbex [1], a library written in C++ using Ibex which is a

library for constraint processing over real numbers. It adds

a validated numerical integration method to compute an

over approximation of the reachable set of an ODE in a

time interval. It returns a set of timed boxes in the form

{([t1] , [x̃1]), . . . , ([tend] , [x̃end])} (and also tighter approxima-

tions at given time steps) using Runge-Kutta methods with

interval analysis.

3 Constraint Programming
We now propose to incorporate ODEs solutions within a

Constraint Programming framework. Constraint Program-

ming [23] is a declarative programming paradigm in which a

user specifies the constraints of a system, generally stated as

first-order logic formulae, and then relies on a solver, which

comes with constraint filtering mechanisms and choice

heuristics, to establish its satisfiability.

3.1 Constraint satisfaction problems
A continuous constraint-satisfaction problem can be defined

as a triplet ⟨V,D,C⟩, where V = {v1, . . . ,vn } is a set of
variables, D = {d1, . . . ,dn } a set of interval domains, each

one being associated to a variable, and C = {c1, . . . , cm } is a
set of constraints over the variables.

Constraint Language. We consider a standard con-

straint language using a finite and fixed setV of real-valued

variables, numeric and boolean expressions. Numeric expres-

sions include real constants, variables and usual operators

over arithmetic expressions. Boolean expressions are built

using boolean operators (∨, ∧ and ¬) and usual compari-

son operators on arithmetic expressions. A constraint c is a
boolean expression whose concrete semantic corresponds to

the set of mappings, called instances, from variables to values

i for which the evaluation, denoted c(i), yields true . Solving
a CSP usually means to find all the instances that satisfy

every constraint of the problem. Because this is generally

impossible when the domains of the variable are continuous,

solvers generally compute a set of boxes (in our case any

abstract element) that covers the solution space. In order to

build this cover, such a solver alternates two main steps:

• Filtering: which reduces the domains of the variables

by removing values that cannot be solutions.

• Exploration: when the domains cannot be reduced any-

more, solvers then duplicate the problem, to create two

(or more) complementary sub-problems.

As repeating these two steps in turn is not guaranteed to

terminate, this procedure continues until the search space

contains no solution, only solutions, or is smaller than some

parameter according to a size metric. We base our work

on the constraint solving framework introduced in [27] in
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which the authors introduce a solving method based on

abstract domains. Algorithm 1 illustrates this procedure and

we explain it in the following.

Algorithm 1 Abstract solving

1: function solve(D,C, r )
2: cover← ∅
3: explore← ∅
4: e =init(D)

5: push e in explore
6: while explore ̸= ∅ do
7: e ← pop(explore)
8: e ← ρ(e,C)
9: if e ̸= ⊥ then
10: if τ (e) ≤ r then
11: cover← cover ∪ e
12: else
13: push ⊕(e) in explore

14: return cover

This algorithm builds a set of abstract elements S that

covers the solution space, i.e., for all instances i that satisfy
all the constraints C, we have ∃e ∈ s, i ∈ γ (e). Firstly, init
creates an abstract element from the initial domains D of

the variables of the problem. Then, the obtained element is

filtered using ρ for each constraint in turn. If the tightened

abstract element is not empty, three cases are possible:

• if the element satisfies the constraint, it is added to the

set of solutions cover.
• if it does not and if it is small enough with respect to

a parameter r (τ (e) ≤ r ), it is also added to the set of

solutions (which makes the resolution method sound).

• otherwise, it is divided into sub-elements using the

split operator ⊕ and the process is repeated with each

of these sub-elements.

When explore is empty, all of the elements have been

processed, and the union of the element in cover is a sound

over-approximation of the solution space.

3.2 Abstract Domain for constraint solving
In [27], the authors define the operators and requirements

over these operators an abstract domain must satisfy in order

to be used in a constraint resolution scheme. The following

definitions recall these.

Definition 3.1 (Abstract domains for constraint solving).
Abstract domains for constraint solving are given by

• a partial order ⟨D♯,⊑⟩ and the usual abstract set op-

erators and values ⟨⊤D♯ ,⊥D♯ ,⊓♯,⊔♯⟩
• an abstraction α and a concretization function γ

Along with:

• a size function τ : D♯ → R+

• a splitting operator on D♯
, ⊕ : D♯ → P(D♯),

• a constraint filtering operator ρD♯ : D♯ × C → D♯ ∪

{⊥♯ }, which given an abstract value e and a constraint
c computes the smallest abstract value (possibly empty)

entailed by c and e .

where the split operator ⊕ should respect Definition 9 of

[27], which we recall here:

Definition 3.2 (Split operator).
1. ∀d ∈ D♯, |⊕(d)| is finite

2. ∀d ∈ D♯,∀di ∈ ⊕(d),di ⊏ d

3. ∀d ∈ D♯,γ (d) =
⋃
{γ (di ) | di ∈ ⊕(d)}

The first property is necessary to guarantee the termina-

tion, the second ensures that the operator actually splits, i.e.,
compute smaller elements than the original one, and the last

one guarantees the soundness of the solving process, i.e., the
splitting does not lose instances. Also, in order to have a ter-

minating process, no infinite sequence of split and constraint

filtering must exists, and thus, every such finite sequence

should yield a element smaller than a given parameter with

respect to τ . More formally, ⊕ and τ must be compatible

according to definition 10 of [27]:

Definition 3.3 (Compatibility of ⊕ and τ ). The split op-

erator ⊕ and the size operator τ are compatible, for any

reductive operator ρ♯

∀d ∈ D♯,∀r ∈ R+,∃k,∀i ≥ k,τ ((⊕ ◦ ρ♯)i (d)) ≤ r

In the remaining of the paper, we will define two abstract

domains along with their split and measure operators, de-

signed specifically for the handling of ODE solutions.

3.3 Tool: Absolute
The AbSolute solver [27] is an open source constraint solver

based on abstract domains. It is built upon the Abstract In-

terpretation framework, and features several techniques and

classical heuristic from Constraint Programming. The solver

is written in OCaml and is usable with several numeric ab-

stract domains (intervals, congruences, octagons, polyhedra),

and domain combinator (products), some of which are based

upon the Apron [17] library. We use AbSolute as an oracle

for DynIbex to verify if the constraints over some dynamic

objects described as ODEs hold. The abstract domains we

present in this paper are implemented as plugins of AbSolute.

They consist in domain combinators that allow the use of

higher-level abstractions better suited for ODEs.

4 Specific abstract domains for constraint
solving with ODEs

Solving a constraint satisfaction problem involving ODEs re-

quires an efficient handling of disjunctive constraints as ODE

solutions are represented using disjunctive constraints as
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shown in section 2. Hence, it is crucial to use an abstract do-

main able to encode disjunctions precisely. Several abstract

domains exist for this purpose (powerset [14, 31], binary

decision trees or binary decision diagrams [10, 16], etc.) and

are generally some kind of disjunctive completion [9]. Dis-

junctive completion is a way to augment the precision of an

analysis by building, from a base abstract domainD
♯
1 , a more

precise one D
♯
2 . Given that D

♯
1 is able to represent exactly a

certain set of properties, D
♯
2 will be able to encode disjunc-

tions of these properties with no loss of precision. This is

very useful in practice as the ⊔♯ operator very often loses

precision with convex representation (boxes, polyhedra, etc.).

However, disjunctive completion can often be costly as the

number of abstract element grows. This is problematic as

in order to have a precise enough over-approximation of an

ODE, it is crucial to split the sequence of time instants into

a lot of very small frames. Moreover, ODEs feature a strong

topological property: as they are abstractions of continuous

functions, abstract elements are topologically close to each

other, and in fact even touch, on two successive iteration

steps. We exploit this idea in this section by proposing two

abstractions: one that takes advantage of the sequential as-

pect of the ODEs (i.e., the order in which the elements are

built), and one that makes use of the continuity property to

propose a fast pre-computation for the operations we need.

4.1 The sequence abstract domain
Using a disjunctive form,many operations can often be costly

if made naively: for example, the meet operation between

two abstract elements d1 and d2 would require n ×m meet

operations of the underlying abstract domain, where n andm
are respectively the number of elements in d1 and d2. How-
ever, such an implementation does not take into account the

structure of an ODE solution. To overcome this issue, we pro-

pose a first abstraction for ODEs: a disjunctive form in which

we add an order between the disjunctions of an abstract ele-

ment. As ODE solutions are built iteratively, we keep track

of this structure by maintaining them sorted according to

the total order defined as follows.

Definition 4.1 (Chronological order). Given two (non-

bottom) abstract elements a,b ∈ D♯
, and a variable t , let

≤D be the total order defined as a ≤D b ≜ min(πt (a)) ≤
min(πt (b)) where πt is the interval hull of the projection of

an abstract element over the variable t , and min is the lower

bound of an interval.

Note that by construction, the resulting interval will al-

ways be non-empty, and hence will always have a minimum.

By doing so, we suppose that the CSP is annotated with a

special variable, denoting time, that should not be treated as

other variables. Using this order we now define the sequence
abstract domain S(D♯) as follows.

1
2 3 4 5 6

7 8

9
10

time

Figure 1. Order of meet operations (in red) of D♯
during

the intersection of two sequences. The hatched zone is the

resulting sequence of one element.

Definition 4.2 (Sequence abstract domain). Given an ab-

stract domain ⟨D♯,⊑D ,αD ,γD ,⊔D ,⊓D , ⊕D⟩, an element

s ∈ S(D♯) is a sequence ⟨d1, . . . ,dn⟩ such that ∀i,di ∈

D♯,di ≤D di+1.

This abstract domain can be seen as a sorted powerset,

and its concretization is given by the union of the concretiza-

tion of the elements of the sequence, γS (⟨d1,d2, . . . ,dn⟩) =⋃n
i=1 γD(di ). We define its partial order ⊑S as follows:

⟨s1, . . . , sn⟩ ⊑S ⟨s
′
1, . . . , s

′
m⟩ ≜ ∀i ∈ [1,n],∃j ∈ [1,m], si ⊑D s ′j

This states that a sequence s1 is smaller than another s2 if
all of the atoms of s1 are included in at least one of the atoms

of s2. Also, the definition of a filtering operator ρS for this

representation is natural as it is sufficient to call the filtering

operator ρD for each element of the sequence.

Join for sequences. If we suppose that all ODEs are defined
over the same time sequences, then we can define the ⊔S join

and ⊓S meet operators over sequences as a point-to-point

extension of their counterparts defined on D♯
. However, as

this is not necessarily the case, we use for the join operation

a merge sort algorithm: given two sequences, this algorithm

builds a sequence that is sorted according to the starting
times of its abstract elements. Using this join operator allows

us to merge two sequences in linear time.

Meet for sequences. Symmetrically, we define the meet op-

erator for our sequence by taking into account the ending
times, given bymax(πt ((e))) of each abstract element e . The
algorithm for themeet operator maintains the ordering of the

sequences, and fig. 1 illustrates the order of meet operations

of D♯
using this algorithm.

Split and measure. As precised in section 3.2, the abstract

domains require to have specific operators for the resolu-

tion of CSP in addition to usual operators, namely the split
operator ⊕S and the measure operator τS .

Definition 4.3 (Split operator for S(D♯)). Given a sequence

s = ⟨s1, . . . , sn⟩ ∈ S(D
♯), the split operator ⊕S : S(D♯) →
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P(S(D♯)) is defined as

⊕S (s) =

{
{⟨s ′⟩ | s ′ ∈ ⊕D(s1)}, when s = ⟨s1⟩
{⟨s1, . . . s n

2
⟩, ⟨s n

2
+1, . . . sn⟩}, otherwise

This operator cuts a sequence into two sub-sequences

of equal cardinality, up to 1, corresponding to the first and

second half of the initial sequence. In case the sequence

contains only one abstract elements, we then use the splitting

operator ⊕D of the underlying domain.

Proposition 4.4. The operator ⊕S is a split operator accord-
ing to definition 3.2.

Proof. First, either s is a singleton ⟨s ′⟩, and |⊕S (s)|= |⊕D(s ′)|
which is finite, or |⊕S (s)|= 2. Hence, ∀s ∈ S(D♯), |⊕S (s)| is
finite. Also, by definition of ⊕S , we have ∀{s ′1, . . . , s

′
n } ∈

⊕S ({s1, . . . , sm }),∃i ∈ [1,n],∃j ∈ [1,m] such that s ′i =
sj =⇒ ∃i ∈ [1,n],∃j ∈ [1,m] such that s ′i ⊑D sj .
Hence by definition of ⊑S , item 2 is verified. Finally, we have

∀s = ⟨s1, . . . , sn⟩, γ (s) =
⋃n

i=1 γD(si ) and
⋃
{γ (s ′i ) | s

′
i ∈

⊕S (s)} = γ (⟨s1 . . . s n
2
⟩) ∪ γ (⟨s n

2
+1 · · · sn⟩) = γ (s) hold,

hence we have item 3 verified. Therefore, ⊕S is a split opera-

tor. □

The measure operator τS has to be designed in such a way

that no infinite series of split ⊕S and reduction ρ are possible.

Definition 4.5 (Size operator for S(D♯)). Given a sequence

s = ⟨s1, . . . , sn⟩ ∈ S(D♯) the measure operator τS :

S(D♯)→ R+ is defined as follows:

τ (s) =

{
τD(s1) when s = ⟨s1⟩
+∞ otherwise

To make sure not to lose precision and to treat each of

the atoms in our sequence individually, the search process

cannot stop when there are more than one element in a

sequence s as τS (s) = +∞. When there is only one element,

the exploration can continue as long as this element is large

enough according to the measure operator D♯
.

Proposition 4.6. ⊕S and τS are compatible according to def-
inition 3.3

Proof. ∀s = ⟨s1 . . . sn⟩, we have at most loд2(n)+1 split oper-
ations using ⊕S before reaching a singleton. Hence, assuming

the split operator ⊕D and the measure τD are themselves

compatible, the split operator ⊕S and measure operator τ
are compatible. □

The sequence abstraction we have defined avoids the com-

binatorial explosion resulting from using a finite powerset

abstraction. For example, it allows us to have a linear time

complexity for the join and meet operations which will prove

very useful.

4.2 Tree abstraction
We now propose a second abstraction for ODEs. This abstrac-

tion is based on the following principle: the solution of an

ODE is first approximated as the unions of all time frames,

using the join operator, then is filtered using a potentially

large number of constraints. Our idea is to incorporate addi-

tional information into the join operation that will speed

up the filtering of constraints by proposing a tree abstract
domain T(D♯). This domain can be viewed as a kd-tree in

which leaves are defined using the numerical abstract do-

main D♯
and internal nodes, also called summaries, give

information about their subtrees. Our use of summaries is

similar to [3], but applied to a CSP framework, in particu-

lar, we show that filtering a constraint can be made more

efficiently using the summaries information. Moreover, the

fact that ODEs are continuous object greatly enhances the

relevance of our summaries. Like the sequence abstract do-

main, the tree abstract domain will allow us to perform the

join operation in a symbolic way. Definition 4.7 describes

the tree abstraction.

Definition 4.7. Given an abstract domain ⟨D♯,αD ,γD ,⊔D ,
⊓D , ⊕D⟩, an element t ∈ T(D♯) is either:

• a leaf: D♯ → T(D♯), noted leaf(d),
• or a union node: D♯ × T(D♯) × T(D♯) →

T(D♯) noted union(u, t1, t2) with u = enve-
lope(t1)⊔D♯envelope(t2)

where envelope is a function T(D♯) → D♯
such that en-

velope(lea f (d)) = d , and envelope(union(u, t1, t2)) = u.
The concretization for this representation is given by the

recursive definition:

γ (t) =

{
γD(t

′), when t = leaf(t ′)
γ (t1) ∪ γ (t2), when t = union(u, t1, t2)

Here, we exploit the fact that γ (d1 ⊔ d2) generally strictly

contains γ (d1) ∪ γ (d2) to provide a summary u of what

is contained in the sub-trees t1 and t2, in the sense that

γ (t1) ⊆ γD(u) ∧ γ (t2) ⊆ γD(u). This can be seen as a two-

level abstraction, as u is an abstraction of both t1 and t2.
This allow us to define a fast pre-computation for the meet

and the filtering operation. Note that this abstract domain

does not improve the precision of the analysis compared to

S(D♯), but is only defined to speed it up. We define also a

partial order ⊑T for trees as following:

t1 ⊑T t2 ≜ ∀l ∈ leaves(t1),∃l ′ ∈ leaves(t2), l ⊑D l ′

Similarly to sequences, we consider that a tree t1 is smaller

than an other t2 if each of its leaves are smaller than one of

the leaves of t2. The auxiliary function leaves computes the

set of all leaves of a tree.

Join operation for T(D♯). Our representation being able to

encode exactly disjunctions, we define the join operator as



Abstract Domains for Constraint Programming with Differential Equations NSAD 2020, November 2020, Chicago, Illinois

a1

a2

b1 b2
a2∩b2 ̸= ⊥, we split them into

{a3, a4 } and {b3, b4 }

time

a1
a3

a4
b1 b3

b4
a4∩b4 ̸= ⊥, we split them into

{a5, a6 } and {b5, b6 }

time

a1
a3

a5
a6

b1 b3
b5 b6

a6∩b6 ̸= ⊥, and are leaves, we stop

time

Figure 2.Order of meet operations of during the intersection

of two abstract elements of T (D♯)

following:

t1 ⊔T t2 = union(envelope(t1) ⊔D envelope(t2), t1, t2)

The greater the intersection of two elements is, the more

accurate the summary is. Because of the continuous nature

of ODEs, this property is particularly interesting as two

successive elements always intersect.

Meet operation for T(D♯). For the definition of the meet

operator for trees, we now exploit the summaries to define a

pre-computation. If two summaries do not intersect, then the

whole corresponding trees do not either. Figure 2 illustrates

the order of meet operations on an example.

4.2.1 Split and measure. To embed our abstract domain

in the constraint solving framework, we must define a split

operation ⊕, along with a measure function τ and a con-

straint filtering operator ρ. The operator ⊕, given by defini-

tion 4.8, performs a symbolic cut when the tree is a union
node, and otherwise uses ⊕D .

Definition 4.8 (Split operator for T (D♯)).

⊕(t) =

{
{leaf(d ′) | d ′ ∈ ⊕D(d)}, when t = leaf(d)
{t1, t2} when t = union(u, t1, t2)

Proposition 4.9. The operator ⊕ is a split operator according
to definition 3.2

Proof. Given a tree t , assuming ⊕D respects definition 3.2,

in case t = leaf(l), ⊕T also trivially respects definition 3.2.

in case t = union(u, t1, t2), we have |⊕T (t)|= 2, and hence,

is finite. Also, by definition of the function leaves, ∀d ∈
leaves(t1) ∪ leaves(t2),d ∈ leaves(t) holds, which implies

that ∀d ∈ leaves(t1) ∪ leaves(t2),∃d ′ ∈ leaves(t),d ⊑D
d ′. Hence, we have ∀t ′ ∈ ⊕T (t), t

′ ⊑T t . Finally, we have
leaves(t) =

⋃
{leaves(t ′) | t ′ ∈ ⊕T (t)}. Hence, by defintion

ofγT ,γT (t) =
⋃
{γT (t

′) | t ′ ∈ ⊕T (t)}. Therefore, ⊕T is a split

operator according to definition 3.2. □

We now define the size function τ : T(D)→ R for trees,

which is given in definition 4.10.

Definition 4.10 (Size operator).

τ (e) =

{
τD(d), when e = leaf(d)
+∞ when e = union(u, t1, t2)

The splitting is done as long as there are disjunctions in

the representation and when a leaf is reached, a branching

to (τD ) is performed.

Proposition 4.11. The split operator ⊕T and the size operator
τT are compatible for any reductive operator ρ, according to
definition 3.3

Proof. Given a leaf node t = leaf(l), a reductive operator
on trees ρT : T(D♯) × C → T(D♯), and a reductive oper-

ator on D♯
, ρD : D♯ × C → D♯

, by definition of ⊕T and

τT : ∀k,τT ((⊕T ◦ ρ)
k (t)) = τD♯ ((⊕D♯ ◦ ρD)

k (l)). Hence, as-
suming ⊕D♯ and τD♯ are themselves compatibles, τT and

⊕T are compatible. Given t = union(u, t1, t2), we have at
most h split operations, where h is the height of the tree

before reaching a leaf node. Hence, no infinite sequence of

splits and constraint filtering can exist, and ⊕T and τT are

compatible. □

4.2.2 Constraint filtering. Finally, note that fast precom-

putation is not only available for the meet operation but also

for the filtering of a constraint:

Definition 4.12. Given a tree t and a constraint c , the fil-
tering operator ρT : T(D♯)→ C → T(D♯) is such that:

ρ(t , c) =




leaf(ρD(t ′)) when t = leaf(t ′)
⊥ when t = union(u, t1, t2)∧

ρ(u) = ⊥D
⊔T (ρ(t1), ρ(t2)) when t = union(u, t1, t2)∧

ρ(u) ̸= ⊥D

Instead of filtering a constraint for each atom of a disjunc-

tion, we do it first for their summary. If we can prove that

a summary u violates the constraint c , i.e., ∀i ∈ γD(u),¬c(i)
(resp. ∀i ∈ γD(u), c(i)), then the child elements will also

violate it. In the case where we can not draw a definitive

conclusion, we propagate the filtering towards the sub-trees.

Proposition 4.13. The filtering operator ρ contracts and is
complete, i.e:
• ρT (t , c) ⊑T t (contraction)
• ∀i ∈ γT (t), c(i) =⇒ i ∈ γT (ρ(t)) (completeness)

The contraction property ensures that values are only

removed from the abstract element, and the completeness

property guarantees that no solution is removed from it.
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Proof. Given a tree t , in case t = leaf(t ′), ρ(t) =
leaf(ρD(t ′)), in which case both the contraction property

and the completeness property are respected, assuming ρD
respects these itself. In case t = union(u, t1, t2),
• either ρD(u, c) = ⊥D , in which case ρT (t) = ⊥T ,
and the contraction property is trivially verified. Also,

as γ (t1) ⊆ γ (u) and γ (t1) ⊆ γ (u), then ρD(u, c) =
⊥D =⇒ ρT (t1, c) = ρT (t2, c) = ⊥T . Therefore
no solution is lost and the completeness property is

verified.

• either ρD(u, c) ̸= ⊥D , then suppose that ρ(t1) ⊑T t1
and ρ(t2) ⊑T t2, then, by induction, we have⊔T (ρ(t1),
ρ(t2)) ⊑T t , and the contraction property is respected.

Similarly, suppose that ∀i ∈ γT (t1), c(i) =⇒ i ∈
γT (ρ(t1)) and ∀j ∈ γT (t2), c(j) =⇒ j ∈ γT (ρ(t2))
then, as γT (t) = γT (t1) ∪ γT (t2) the completeness

property is verified by induction.

□

The tree abstraction that have been defined in this section

exploits the continuity aspect of ODEs solution to propose a

fast pre-computation for the filtering of a constraint and the

meet operation. It can thus be seen as an incremental pow-

erset, that gradually augments its precision, starting from

the precision of a base abstract domain D to the precision of

its powerset P(D) if needed only. This will greatly speed-up

the solving process in most cases.

5 Use case and benchmarks
We show the interest of our approach on a real-world appli-

cation: the trajectory validation for a swarm of Unmanned

Aerial Vehicles (UAVs). In this context, trajectory planning

consists in associating to each UAV a trajectory by taking

into account the dynamics of the vehicle, the environment

the fleet evolves in, and uncertainties about informations

such as the position or orientation of the UAV, which are

bounded. We consider here that all UAVs are described by the

same dynamics, explicited by the ODE presented in eq. (5):

Si =




Ẋi =
*...
,

ẋi

ẏi

żi

+///
-

=
*...
,

vi cosϕi cosθi

vi sinϕi cosθi

vi sinθi

+///
-

Xi (0) ∈ [X0]

(5)

with Xi = (xi ,yi , zi )
T
the state vector representing the

position of the ith UAV and ui = (vi ,ϕi ,θi )
T
its control

vector consisting in its velocityvi , heading angleϕi and track
angle θi . Note that this physical model is not intended to be

realistic, (e.g., UAVs are considered as points) but to serve as

a basic model for trajectory generation, the main interest of

this application being the study of trajectory validation.

The safety property we aim to prove as we deal with UAV

swarms is that trajectories do not intersect with each others.

However, verifying this property can be costly, especially as

the number of UAV grows as we have to prove for each UAV

that it does not collide with all others. Consider a fleet of

N UAVs, д a function associating to each UAV its trajectory,

and d , the duration of the simulation, we want to prove that:

∀i, j ∈ {1, . . . ,N },∀t ∈ [0,d], i = j ∨ дi (t) ∩ дj(t) = ∅

If a collision is detected, either there is indeed a collision

between the concrete trajectories, or the collision on abstract

trajectories is a false alarm due to the over-approximation

of the solutions of the ODEs. In order to minimize the risk

of obtaining such false alarms, it is crucial to aggressively

sub-divide [0,d] into small intervals. Our use case can be

expressed as a CSP without loss of generality. We simply

make the assumption that the space the fleet evolve in is

bounded (although potentially big) and we limit the duration

of the flight to a given time. These assumptions guarantee

that the search-space is finite and that our solving method

will always terminate.

A trajectory r can be as a disjunction of predicates r =
(p1∧m1)∨(p2∧m2) . . .∨(pn ∧mn)where each pi represent
the position (e.g. x ∈ [10, 12]∧y ∈ [0, 2]∧z ∈ [0, 10]) in space
of a given UAV during a momentmi . It is to be understood

as the following property: the UAV is either at point p1 during
the time frame m1, or at position p2 during the time frame
m2, etc. This property is always true, as at least one of its

atoms will be true. When dealing with a fleet of n UAVs,

we have to define n trajectories r1, . . . rn and the constraint

corresponding to the possible collisions for each UAV with

the others, as expressed by Eq. 6.

(r1 ∧ r2) ∨ (r1 ∧ r3) ∨ . . . (r1 ∧ rn)∨

(r2 ∧ r3) ∨ . . . (r2 ∧ rn)∨

. . .∨

(rn−1 ∧ rn)

(6)

There is a collision if two constraints representing two tra-

jectories are true at the same time. If there is no solution to

the CSP, then the trajectories do not collide with each other.

If one or several solution is found, then the trajectories are

invalid. The information about the collisions can then be

used to replan part or all of the trajectories.

5.1 Experimental results
The two abstract domains presented in the previous sections

have been implemented and integrated into the AbSolute

constraint solver. We demonstrate their effectiveness on a

set of CSPs corresponding to different instances of the use-

case presented above. We modeled the physical system of

each drone and carried out the flight simulation on different

number of iterations from 1000 to 64000. We have repeated

this protocol for swarms of different sizes N , from 2 to 20
UAVs per swarm. This makes the size of the constraints to be

solved fairly large, which will be necessary to illustrate the

good scaling of our approach. We then ran the solver on the
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N = 15 N = 20

N = 5 N = 10

N = 2 N = 3

Figure 3. Solving time according to the number of iterations

for swarms of 2, 3, 5, 10, 15 and 20 UAVs

generated examples with different configurations. Solver’s

output is either SAT, meaning the problem admits at least

one solution (there is a collision), or UNSAT, meaning it does

not (the trajectories are valid). All the domains compared

lead to the same conclusions concerning the satisfiability of

the problem being tested, some more rapidly than others,

and this is why we exhibit here only their execution times.

Experiments were run on a machine equipped with an Intel

Core i7-4810MQ CPU at 2.80GHz and 16GB RAM.

Results. Figure 3 shows that the two abstractions we have

defined outperform the default solving of AbSolute, which

uses only boxes. The use of boxes allows the solver on some

examples to resolve the CSP quite quickly, especially in the

absence of collision. However, as soon as the trajectories are

close to each other or worse, intertwined, a single box is no

longer precise enough to draw a conclusion as to the satisfia-

bility of the CSP. In this case the solver must resort to several

split steps to regain precision, which ultimately becomes very

expensive and makes it time out on most examples where

the size of the swarm grows. Moreover, our abstract domains

perform better than a simple powerset, which is able to en-

code precisely disjunctions but is outscaled by our methods.

Indeed, using a powerset presents the opposite problem than

using boxes: the abstract domain is precise enough to prove

the satisfiability or the infeasibility of the problem in most

cases, but too expensive to be able to do it before timing

out so much so that it makes it slower than boxes in most

cases. The two abstractions that we have developed bypass

these two problems. The management of disjunctions is done

symbolically, which permits a good precision and incorpo-

rating the assumptions specific to the nature of ODEs into

our representations allows us to obtain more efficient op-

erations in most cases. Our sequence abstraction exploits

the chronological ordering of ODEs to perform a more ef-

ficient intersection operation than with a simple powerset,

and our tree abstraction offers the possibility of having a

quick pre-computation for the intersection and the filtering

operations. This provides an incremental precision-cost ratio

and gives good results in practice. Also, even though T (B)
always perform better than S(B) on this benchmark, they

are not comparable and T (B) could behave less efficiently if

the trajectories were very deeply intertwined, in which case

the precomputation using the summary would be ineffective.

6 Conclusion
We have shown that it is possible to validate cyber-physical

systems using techniques from different areas, such as Con-

straint Programming, Abstract Interpretation and Interval

Analysis. Our work can be summarized in two parts: a) the

correct over-approximation of the reachability states of some

physical systems described by ODEs, and b) the resolution of

constraint satisfaction problems implying such systems. For

the latter purpose, we have defined two abstract domains

able to take advantage of the characteristics of ODE solu-

tions, namely their sequential and their continuous nature.

We have demonstrated the usefulness of our techniques on

realistic application examples implying the absence of col-

lisions between the trajectories of a UAV swarm. The “no

collision” property was expressed as a CSP over ODE, and

its resolution highlighted the effectiveness of our abstract

domain T(D♯). Both abstract domains were implemented as

AbSolute plugins and benchmarked over real examples.

The work we have done may be deepened in several ways:

we made the choice of using for elements of T(D♯) the
same numeric representation for leaves and summary nodes.

It could be effective to use some more expressive abstract

domains for the nodes than for the leaves (e.g., relational
representation like polyhedra for nodes and intervals for

leaves) to minimize the loss of precision due to join opera-

tion, and thus further improve the capabilities of our tree

abstract domain. Another choice we have made is not to

modify the partitioning of time defined by our numerical

integration method. However, it might be interesting to di-

vide certain time windows to align all the ODEs on the same

partitioning, or to merge certain elements when an exact

union can be made to improve performance. These points

will be studied in the future. Moreover, the techniques we
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have developed are intended for constraint satisfaction prob-

lems, and not optimization problems. It could be interesting

to extend our methods on optimization problems, e.g. in our

UAV swarm application, only the first collision is interesting,

as the simulation is not valid anymore after it. Hence, this

problem becomes an optimization problem, where the time

is the value to minimize.
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