
Automatic Synthesis of Random Generators for1

Numerically Constrained Algebraic Recursive2

Types?3

Ghiles Ziat1, Vincent Botbol2, Matthieu Dien3, Arnaud Gotlieb4, Martin4

Pépin1[0000−0003−1892−3017], and Catherine Dubois55

1 Université Paris Cité, IRIF, 75205 Paris Cedex 13, France, {ghiles.ziat,6

martin.pepin}@irif.fr,7
2 Nomadic Labs, vincent.botbol@nomadic-labs.com8

3 Normandie Université, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen,9

France, matthieu.dien@unicaen.fr10
4 SIMULA RESEARCH LAB, arnaud@simula.no11

5 Ecole Nationale Supérieure d’Informatique pour l’Industrie et l’Entreprise,12

Samovar, catherine.dubois@ensiie.fr13

Abstract. In program verification, constraint-based random testing is14

a powerful technique which aims at generating random test cases that15

satisfy functional properties of a program. However, on recursive con-16

strained data-structures (e.g., sorted lists, binary search trees, quadtrees),17

and, more generally, when the structures are highly constrained, gener-18

ating uniformly distributed inputs is difficult. In this paper, we present19

Testify: a framework in which users can define algebraic data-types dec-20

orated with high-level constraints. These constraints are interpreted as21

membership predicates that restrict the set of inhabitants of the type.22

From these definitions, Testify automatically synthesises a partial speci-23

fication of the program so that no function produces a value that violates24

the constraints (e.g. a binary search tree where nodes are improperly in-25

serted). Our framework augments the original program with tests that26

check such properties. To achieve that, we automatically produce uni-27

form random samplers that generate values which satisfy the constraints,28

and verifies the validity of the outputs of the tested functions. By gener-29

ating the shape of a recursive data-structure using Boltzmann sampling30

and generating evenly distributed finite domain variable values using31

constraint solving, our framework guarantees size-constrained uniform32

sampling of test cases. We provide use-cases of our framework on sev-33

eral key data structures that are of practical relevance for developers.34

Experiments show encouraging results.35

? this research was partially supported by the ANR PPS project ANR-19-CE48-0014
and the “DYNNET” project, co-funded by the Normandy County Council and the
European Union (ERDF-ESF 2014-2020).

1 Introduction36

Software Testing is one of the most widespread program verification techniques,37

and is also one of the most practical to implement. One interesting instance of38

it is Property-based Testing (PBT), where programs are tested by generating39

random inputs and results of the output are compared against software specifica-40

tions. This technique has been extensively studied, for testing correctness [20,31],41

exhaustiveness [34], complexity [11] etc. However, this technique requires the de-42

veloper to manually write the tests, that is the properties to be checked and the43

random generators. The latters can be particularly complicated to design, espe-44

cially in the case of complex and constrained algebraic data structures.45

In this field, constraint-based random testing [23] (commonly used in PBT46

[26,13]) is a powerful technique which aims at generating random test cases that47

satisfy functional properties of a program under test. By specifying a property48

that a program has to satisfy and by using uniformly-distributed inputs gen-49

erators, it is possible to uncover subtle robustness faults that may be not be50

discovered otherwise. For instance, [1] explored the usage of PBT for testing51

a steam boiler, [28] explored its usage for wireless sensor network applications.52

It is worth noticing that generating inputs according to a uniform probability53

distribution is crucial to ensure that all the distinct program behaviours have54

the same chance to be triggered, even those which are the most constrained. The55

technique has been successfully applied in the field of unit testing for imperative56

programs [22] as well as various programming languages including Haskell [15],57

Prolog [3] and proof-assistant methodologies and tools such as Coq [32] or Is-58

abelle [10]. Sampling constraint systems solutions according to a uniform dis-59

tribution is a well-known difficult problem. Initially studied in the context of60

hardware testing [30], the problem has been studied in [21] and more extensively61

in [2]. Other random generation schemes are either not uniform, or very slow62

e.g. rejection sampling is generally uniform by construction, but fits very poorly63

with generation under constraints.64

Recently, in [38] the authors introduced an automated framework capable65

of providing tests for functions that manipulate constrained values without re-66

quiring manual input from the programmer. The framework introduces a type67

language, with algebraic data-types, and constrained types i.e. types augmented68

with a membership predicate that is used to filter invalid representations. To69

verify that a function does not create invalid representations, the authors opted70

for a random testing approach. The main interest of the framework is that both71

the generators and the specifications are automatically extracted from the con-72

straints specified by the user, which greatly alleviate the user’s workload. Gen-73

erators are uniform random value samplers used to provide input for functions,74

and specifications that are predicates that verify that a given value satisfies the75

constraint attached to its type, are used to check whether a function’s output76

violates the constraint or not. Their tool is implemented as a pre-processor for77

OCaml programs, i.e. before compiling, programs are rewritten into augmented78

programs where a test suite has been added. During the pre-processing step,79

from each constrained type declaration τ is extracted a CSP p. Then, each p is80

2

solved only once, that is to say that a characterisation of the set of solutions of81

p, called coverage, is calculated. Each coverage is then compiled into code which82

uniformly generates solutions which are then converted back into values of the83

type τ . However, to be able to solve a CSP only once per constrained type,84

the authors limit themselves to types involving a fixed number of numerical85

atoms (e.g. tuples), which automatically excludes recursive types. This makes86

it impractical as, for instance, in OCaml, real-world programs rely heavily on87

recursive data-types (lists, trees, sets, etc.).88

This paper investigates the automatic synthesis of uniform pseudo-random89

generators, as in [38], but for recursive constrained types.90

1.1 Contributions91

– A programmable method to restrict the values a recursive type can take.92

– An algorithm that uses Boltzmann generation and constraint solving to au-93

tomatically derive uniform generators for recursive constrained types.94

– An experimental study of the performances of our technique.95

1.2 Outline96

This paper is organised as follows: Sec.2 presents use cases of our methods on97

some examples of realistic code. Sec.3 defines our solving technique which mixes98

Boltzmann generation and global constraint solving. Sec.4 recalls some elemen-99

tary notions about Boltzmann sampling and details some specifics about our100

use-case. Sec.5 presents our prototype and gives some details about its function-101

ing, current capabilities and restrictions. We also give some details about our102

implementation and measure experimentally the performances of the generators103

we derive for recursive constrained types. Sec.6 describes some related work. Fi-104

nally, Sec.7 summarises our work and discusses possible future improvements.105

2 A Declarative Programming Approach106

We propose a testing framework that allows programmers to specify constraints107

on recursive data structures. From these constraints, the framework extracts108

a Constraint Satisfaction Problem (CSP) which is solved in such a way that109

uniform random instances (i.e., test cases) are generated. These instances are110

then used for testing functions in order to find defects.111

2.1 Preliminaries112

A pseudo-random generator g for an algebraic data-type τ is a function g of113

type S → τ . Here, S is the random state used by the pseudo random number114

generator. A constrained type is a pair 〈τ, p〉, with τ an algebraic data-type and115

p : τ → bool a predicate over values of type τ . The set of its inhabitants is116

3

defined as {t ∈ τ | p(t) = true}. A pseudo-random generator g for a constrained117

type 〈τ, p〉 is a function g : S → τ s.t ∀s ∈ S, p(g(s)) = true.118

Here, we face two main challenges for automating random testing of recursive119

data-types. First, we have to equip the developer with convenient means for120

specifying constraints attached to a given data-type. For example, we want to121

express that a list of integers is sorted or that a tree is a binary search tree122

(i.e., the left child node value is always smaller than the right one). Second,123

building an uniform random value generator for constrained recursive data-types124

is highly challenging. Recursive types can dynamically grow to an arbitrarily125

large size and, deriving generators for such types requires the resolution of a126

complex constraint system. In particular, we have to manage CSPs with an a-127

priori unknown number of variables and constraints. The grammar of Ocaml128

types and constraints annotations are given in Figure 7. In the following, we129

give two illustrative examples.130

2.2 Example 1: Inserting an element into a set of integers131

Let start with list, a recursive data-type associated to lists of integers, for132

which a possible type declaration is given in Fig.1. Using list to specify a

1 type list = Empty | Cons of int * list

Fig. 1: OCaml type declaration of lists of integers
133

Set data structure can easily be done using Testify, by using the annotation134

[@@satisfying _] and the [alldiff] constraint as illustrated by Fig. 2.

1 type uniquelist =
2 | Empty
3 | Cons of int * uniquelist [@@satisfying alldiff]

Fig. 2: OCaml type declaration of sets of integers using lists
135

We can automatically test the functions that manipulate instances of the136

uniquelist type by checking if they break the properties attached to it. For137

that, we have to define a generator and a specification for the corresponding138

type. To randomly generate instances, we first draw at random an instance of139

size n using Boltzmann generation (see Sec.4), then we build a CSP (X ,D, C)140

containing n finite domain variables and solve it using Path-oriented Random141

Testing (PRT) (see Sec.3) and eventually we build a random generator g able to142

produce uniformly distributed sets of size n.143

A key aspect of Testify is based on the usage of global constraints, which144

are arithmetic-logic constraints holding over a non-fixed number of variables.145

In the example of Fig.2, we translate the declaration [alldiff] into a all_-146

different global constraint implementation and used it to generate uniformly147

distributed solutions that can be used to polulate test cases. For other recursive148

data-types, we use combination of multiple global constraints and arithmetic149

4

constraints. Possible recursive data-types that can be implemented and tested150

in our framework include functions that generate and manipulate (un-)ordered151

lists and sets, trees, binary search trees, quadtrees, etc.152

Fig.3 shows an example of a function which implements the insertion of an153

element within a set of integers and the code that is automatically generated for154

the testing of this function6.155

1 let rec add (x:int) (l:uniquelist) : uniquelist =
2 match l with
3 | Empty -> Cons(x,Empty)
4 | Cons(h,tl) -> if x <> h then Cons(h,(add x tl) else l)
5

6 (* generated code*)
7 let add_test () =
8 let size = Random.int () in let rand_x = Random.int () in
9 let rand_l = unique_list size in

10 assert (alldiff_checker (add rand_x rand_l))

Fig. 3: Insertion of an element into a set, and the generated corresponding test

Here, testing the function function means verifying that every output pro-156

duced is indeed sorted (assert (alldiff_checker (add rand_x rand_l)). Note157

that we have used the return type annotation to automatically derive a (partial)158

specification for the function, but the generator we automatically synthesise can159

also be used to test any hand-written specification.160

2.3 Example 2: Binary Search trees161

Binary Search Trees (BST) are binary trees that additionally satisfy the following162

constraint: the key in each node is greater than or equal to any key stored in163

the left sub-tree, and less than or equal to any key stored in the right sub-tree.164

Stated differently, the keys in the tree must be in increasing order in a depth-165

first search traversal, in infix order. From this observation, we propose, using166

our framework, a possible OCaml declaration for BSTs illustrated in Fig.4.167

1 type bst =
2 | Node of bst * (int[@collect]) * bst
3 | Leaf [@@satisfying fun x -> increasing x)]

Fig. 4: Testify type annotation for binary search trees

Rather than defining global constraint for all user-declared data-types, we168

break the problem in two parts. On the one hand, we define or reuse known169

global constraints for lists, and on the other hand we define a way to browse170

6 The predicate alldiff_checker checks that the result list does not contain dupli-
cates. It should not be mixed with the version of alldiff used in the type declaration
which is used to generate randomly distributed solutions of that constraint

5

data structures, in a certain order, by collecting the components that are subject171

to a global constraint. This is done using the (int[@collect]) annotation.172

Also, the order in which the structure is explored is crucial as it determines173

the order in which the variables will be passed to the global constraint. By174

default, a depth first order is assumed. For constructors with several arguments175

(e.g. Node), and for tuples, the order in which the traversal is made is mapped176

on the declaration order of the tuple component, that is in traversal order. Fig.5177

shows the code generated that traverses the tree.178

1 let rec collect = function
2 | Node (a, b, c) ->
3 List.flatten [collect a; Collect.int b; collect c]
4 | Leaf -> []

Fig. 5: Generated collector for binary trees

Here, the primitive Collect.int is a primitive of our framework that takes179

an integer and builds the singleton list with this element. This way, we first180

visit the left sub-tree, the root and the right sub-tree. Using pre-order or post-181

order would give different results. This means that the constructor Node must182

be declared in the above order and, for example, the following would be in-183

valid: Node of (int[@collect]) * binary_tree * binary_tree. However, this re-184

striction can easily be lifted by providing an annotation which would allow the185

programmer to explicitly specify the traversal order. Similarly, a global anno-186

tation [@bfs] (resp. [@dfs]) could be used to specify that the structure must187

be traversed using a breadth first search (resp. depth first search). This will be188

studied in future work.189

3 Constrained Type Solving190

A Constraint Satisfaction Problem (CSP) is a triple (X ,D, C) where X is a set191

of variables, D is a function associating a finite domain (considered here as a192

subset of Z without any loss of generality) to every variable and C is a set of193

constraints, each of them being < var(c), rel(c) >, where var(c) is a tuple of194

variables (Xi1 , .., Xir) called the scope of c, and rel(c) is a relation between195

these variables, i.e., rel(c) ⊆
∏r

k=1 D(Xik). For each constraint c, the tuples of196

rel(c) indicate the allowed combinations of value assignments for the variables197

in var(c). Given a CSP (X ,D, C), an assignment is a vector (d1, .., dn), which198

associates to each variable Xi ∈ X a corresponding domain value di ∈ D(Xi).199

An assignment satisfies a constraint c if the projection of X onto var(c) is a200

member of rel(c). The set of all satisfying assignments is called the solution set,201

noted sol(C). A constraint c is said to be satisfiable if it contains at least one202

satisfying assignment, it is inconsistent otherwise. A CSP (X ,D, C) is satisfiable203

if it contains at least one assignment which satisfies all its constraints (i.e.,204

sol(C) 6= ∅). A global constraint is an extension of CSPs with relations concerning205

a non-fixed number of variables. For instance, the sort(Xs, Ys) global constraint206

6

[29] takes as inputs two lists of n finite domain variables Xs, Y s (where n is207

unknown) and states that for each satisfying assignment (d1, .., dn, d
′
1, .., d

′
n) of208

the constraint, we have ∀j, ∃i s.t. d′j = σ(di) and d′1 ≤ .. ≤ d′n, where σ is a209

permutation of [1..n]. Filtering a global constraint c(X1, .., Xn) with the bound-210

consistency local filtering property means to find D′ such that for all i, the211

extrema values of D′(Xi) are parts of satisfying assignments of c.212

3.1 Path-Oriented Random Testing213

Path-oriented Random Testing (PRT) is basically a divide-and-conquer algo-214

rithm, introduced in [22], which aims to generate a uniformly distributed subset215

of solutions of a CSP. Starting from an initial filtering step result, the general216

idea is to fairly divide the resulting search space into boxes of equal volumes and,217

after having discarded inconsistent boxes using constraint refutation, to draw at218

random satisfying assignments.219

More precisely, applying constraint filtering results in domains that can be220

over-approximated by a larger box (i.e., an hyper-cuboid) that contains all the221

filtered domains. Based on an external division parameter k, PRT then fairly222

divides the box into k subdomains of equal volume. When a subdomain cannot223

be divided according to the division parameter k, then it is simply extended until224

its area can be divided. The iteration of the process leads to a fair partition of225

the search space into kn subdomains where n is the number of variables of226

the CSP. Then constraint refutation can be used to discard (some) subdomains227

which are inconsistent with the rest of the CSP. As all subdomains have the228

same volume, it becomes possible to sample first the remaining subdomains229

and then, second, to randomly draw values from these subdomains. Note that,230

when all the subdomains are shown to be inconsistent, then the CSP is shown231

to be inconsistent. This contrasts with reject-based methods which will trigger232

assignment candidates and will reject them afterwards, without terminating in233

a reasonable amount of time.234

Input: CSP:(X ,D, C), k,N : #Sol. - Output: t1, .., tN or ∅ (Inconsistent)
D′ := boxfilterbc(X ,D, C); (H1, .., Hp) := Fairly_Divide(D′, k); T := ∅;
while N > 0 and p 6= 0 do

Pick up uniformly H at random from H1, .., Hp;
if H is inconsistent w.r.t. C then

remove H from H1, .., Hp

else
Pick up uniformly t at random from H and remove it;
if C is satisfied by t then

add t to T ; N := N − 1;
end

end
end
return T;

Algorithm 1: Path-Oriented Random Testing adapted from [22] to the uni-
form random generation of N solutions of a CSP

7

The PRT algorithm, adapted from [22] to the case of CSP solution sam-235

pling, is given in Figure 1. It takes as inputs a CSP, a division parameter k,236

and N a non-negative integer. Here, we make the hypothesis that, if the CSP237

is consistent, it contains more than N solutions. The algorithm outputs a se-238

quence of N uniformly distributed random assignments which satisfy the CSP.239

If the CSP is unsatisfiable, then PRT returns ∅. After an initial filtering step240

using bound-consistency, the algorithm partitions the resulting surrounding box241

in subdomains of equal volume (Fairly_Divide function). Then, for each lo-242

cally consistent subdomain H in the partition, value assignments are randomly243

selected and checked against the constraints of the CSP. Those which do not244

satisfy the constraints are simply rejected. As shown in [22], this process ensures245

the uniform generation of tuples in the solution space.246

3.2 Extension with Global Constraints247

Handling global constraints is a natural extension of PRT as it allows us to248

handle recursive constrained data-types. As the shape of the data structure249

is unknown at constraint generation time, the number of variables to be han-250

dled is also unknown in the general case. Thus, using global constraints in this251

context is particularly useful as it allows us to avoid the decomposition of a252

global constraint into the conjunction of several simpler constraints. This re-253

sults in both a stronger and faster pruning. In order to handle recursive con-254

strained data-types, we had to provide a dedicated interface for accessing the255

deductions from global constraint solving. To facilitate the access to global256

constraints, we created an API which provides results of PRT over different257

global constraint combinations. The API provides access to predicates such as258

increasing_list(+int LEN,+int GRAIN,-var L) in which L is instantiated to259

a list of LEN uniformly distributed random integers ranked in increasing order,260

and the random generator is initialised with GRAIN. Optionally, the predicate261

can be called with domain constraints in order to constrain the returned list262

of values in specific subdomains. Other similar predicates are provided as part263

of the API, namely increasing_strict_list/3 (+int LEN,+int GRAIN,-var264

L) which returns a list of strictly increasing integers; decreasing_list/3 (resp.265

decreasing_strict_list/3) which provides a list of integers in (resp. strict)266

decreasing order or else alldiff_list/3 which returns a list of uniformly dis-267

tributed random distinct integers. PRT can also be used in combination with268

any available global constraint and arithmetico-logic constraint. The following269

example, given in Fig.6 illustrates how PRT is used in this respect.270

In this example, PRT is used with one global constraint, namely sort(Xs, Y s),271

and some domain and arithmetic constraints to populate a constrained binary272

search tree (BST) of size 6. In this example, the shape of the BST is unknown273

and some constraints hold over the keys: the domain of the key-variables is274

constrained (from an externally specified source), e.g., key X1 ∈ −2..8, key275

X2 ∈ −3..5, etc. and any key of the BST corresponds to the sum of its chil-276

dren (if any), e.g., Yfather = Ychildl
+ Ychildr

. Note that the keys have to be set277

in increasing order to correspond to a valid BST. Note also that we ignore in278

8

?

?

? ?

?

?

(a) Shape
generation

Y4

Y2

Y1 Y3

Y6

Y5

(b) Depth-first
walk

X1 ∈ −2..8, X2 ∈ −3..5, X3 ∈ −3..10,
X4 ∈ −1..9, X5 ∈ 0..7, X6 ∈ 0..8,
sort((X1, .., X6), (Y1, .., Y6)),

Y2 = Y1 + Y3, Y5 = Y6, Y4 = Y2 + Y6

(c) Generating the corresponding CSP

8

−1

−1 0

9

9

(d) PRT first sol.

4

0

0 0

4

4

(e) PRT second
sol.

4

−1

−2 1

5

5

(f) PRT third sol.

Fig. 6: Generation of a constrained BST of size 6. Division parameter=2, length of
seq.=3, 60 subdomains over 64 have been discarded after the first filtering.

which order will the keys be positioned in the tree. The first step of our method279

corresponds to the generation of a uniformly distributed random shape of the280

BST (Fig.6(a)) using the Boltzmann method, described in Sec.4. Then, a depth-281

first walk along the tree assigns variable identifiers to the nodes and collects the282

constraints that must hold over the constrained data structure (Fig.6(b)). The283

generated CSP (Fig.6(c)) can then be solved by using PRT, which generates, in284

this example, three uniformly distributed random solutions (Fig.6(d)(e)(f)). It285

is worth noticing that other uniform random solutions sampling methods such286

as [21,36] could have been used in this context. PRT was chosen because of its287

availability and simplicity. However, non-uniform random sampling such as a288

simple heuristic selecting at random variable and values to be enumerated first289

would not have been appropriate in this context as the goal was to test the290

robustness of user-defined functions in functional programming.291

4 Boltzmann Sampling292

The Boltzmann method was introduced in [17] as an algorithmic method to293

derive efficient sampler from combinatorial classes. Combinatorial classes are294

just sets of discrete structures with a size (a non-negative integer) and such that295

the number of structures having the same size is finite. For example, the binary296

trees whose size is the number of leafs is a combinatorial class, but binary trees297

whose size is the length of leftmost branch is not because the number of binary298

trees with a leftmost branch of fixed length k is infinite. We briefly present the299

method here and refers the reader to [17] for more details.300

In the context of that paper (similarly to [12]), that method directly trans-301

lates into an automatic way to derive a uniform random generator of terms for302

9

〈decl〉 ::= ‘type’ 〈type identifier〉 ‘=’ 〈type〉 type declaration
{‘[@@satisfying’ 〈constraints〉 ‘]’} Testify’s annotation

〈type〉 ::= 〈coretype〉
| 〈sumtype〉

〈coretype〉 ::= ‘int’ | ‘float’ | ‘char’ | … basic types
| 〈coretype〉 {‘*’ 〈coretype〉 } product
| 〈type identifier〉

〈sumtype〉 ::= 〈constructor identifier〉 {‘[@collect]’} ‘of’ 〈coretype〉
| 〈sumtype〉 {‘|’ 〈sumtype〉 }

〈constraints〉 ::= ‘alldiff’ | ‘increasing’ | ‘decreasing’ SICStus global constraints
| 〈arith〉 arithmetic constraints like in [38, Fig. 1]
| 〈constraints〉 {‘&&’ 〈constraints〉}

Fig. 7: Syntax of OCaml algebraic data-types (ADT) with Testify’s annotation

the type language whose syntax is given in Fig.7. In our case, the produced303

generators only generate a shape of tree structure in a first step and the content304

of this shape is provided in a second step by a constraint solver which makes305

sure to fill the shape with values that satisfy the specified constraints. For each306

constrained recursive type declaration, we must therefore generate a glue func-307

tion between the shapes generated by the Boltzmann sampling method and the308

solutions returned by the solver used. This function is illustrated in the case of309

binary search trees in Fig.8310

1 let rec fill_binary_tree shape solutions =
2 match shape with
3 | Label ("Node", [x1; x2; x3]) ->
4 let x1 = fill_binary_tree x1 solutions in
5 let x2 = Testify_runtime.to_int x2 solutions in
6 let x3 = fill_binary_tree x3 solutions in
7 Node (x1, x2, x3)
8 | Label ("Leaf", []) -> Leaf)

Fig. 8: Generated function for filling the shapes for binary search trees.

Here, we consider types as sets of terms (the inhabitants of the type) whose311

size is the number of [@collect] values they contain. For example, using type binary_tree312

of Sec.2, the term Node(Node(Leaf, 3, Leaf), 25, Leaf) has size 2.313

In the following, we denote ΓAx a Boltzmann sampler of parameter x for the314

set A. Such sampler produces an object γ ∈ A with a probability x|γ|

A(x) where |γ|315

is the size of γ and A(x) is a normalizing factor called generating series7. Note316

that objects of the same size have the same probability to be drawn.317

7 The generating series A(z) of a combinatorial class A is defined by A(z) =
∑

γ∈A z|γ|

10

The second interest of Boltzmann samplers is that they compose well with318

sum, product and substitution i.e. the constructors of ADTs. Fig.9 shows the319

derivation of such samplers. At the end of the generating process, the object

1 type t = a * b (* a and b are 2 types previously defined *)
2 let gen_t x = gen_a x, gen_b x
3

4 type u = A of a | B of b
5 let gen_u x =
6 if random() < A(x)/(A(x) +B(x))
7 then gen_a x else gen_b x
8

9 type alst = Nil | Cons of a * alst (* alst(z) = 1 + z · alst(z) *)
10

11 let rec gen_alst x : alst =
12 if random() < 1/(1−A(x))
13 then Nil else Cons(gen_a x, gen_aList A(x))

Fig. 9: Sampler derivation using Boltzmann
320

drawn has a random size, but we see in the previous code that the choice of321

the parameter x influences the size. Note that we can precisely and efficiently322

compute x to target a size (see [6] or [33] for the details).323

Still, the size is random. The last ingredient is to choose a parameter ε (which324

does not depend of the targeted size n) and keep only objects of size between325

n− ε and n+ epsilon. Thus, the size of the object is kept up to date during the326

generation and the generation is stopped if that size exceeds the upper bound327

n+ε. At the end, the object may be smaller than n−ε in which case it is rejected328

too. However, the theory (see [17]) guarantees that the rejections cost remain329

relatively low, i.e. the cumulated size of objects sampled to obtain an object of330

size in the interval [n − ε, n + ε] is in O(n). So the complexity of the overall331

process is linear in the size of the generated object.332

An important point to mention is the case of polymorphic types. From a333

theoretical point of view they fit in the framework. But from a practical point of334

view it is hard to sample a “polymorphic value”. To deal with that limitation, the335

Boltzmann samplers are instantiated only for concrete types e.g. not for 'a list336

but for int list.337

5 Implementation and Experiments338

We have implemented the work presented in the previous sections in a tool339

available at the url https://github.com/ghilesZ/Testify. Our implementa-340

tion relies on several state-of-the-art tools. The derivation of OCaml code from341

annotated OCaml source files is done using the ppx framework, as in [37,5],342

which is a form of generic programming [24]. Pre-processors using ppx are ap-343

plied to source files before passing them on to the compiler. They can be seen as344

self-maps over abstract syntax trees. In our case, the source files are traversed to345

11

https://github.com/ghilesZ/Testify

find OCaml type declarations and derive their associated generators. These gen-346

erators are then used to provide inputs for the functions that must be tested. We347

have implemented the techniques presented here for the global constraints that348

we have been able to identify in real data structures (BSTs, Sets, etc) namely349

alldiff, increasing and decreasing (both strict and large versions). Note that to350

extend our implementation, i.e. add a global constraint„ it is sufficient to add351

to the constraint solver a propagator for the said global constraint, as both the352

step of traversing the structure and the random generation procedure presented353

in section 3 being common to all types.354

The work done by Testify is divided into two phases: the first is the pre-355

processing phase during which our tool collects some information on the types356

needed to build the generators. The second is the testing phase, where the gen-357

erated code is executed to produce inputs for the functions under test. Note that358

the pre-processing phase is performed only once while the testing phase can be359

triggered multiple times, each time one needs to run the tests.360

We distinguish four kinds of types, for which we provide four different syn-361

thesis techniques:362

– For non recursive unconstrained types (e.g. int, float * (int * int) ...)363

we determine at pre-processing time the function to be used as a generator.364

For that, we rely on the qcheck [15] library, which provides the primitives365

for building and composing generators.366

– For non recursive constrained types (e.g. int[@satisfying fun x -> x >=0]),367

we extract a single CSP which is solved once, still at pre-processing time.368

From this resolution is extracted a code that draws uniformly solutions of369

this CSP and rebuild from them a value of the corresponding type. This is370

the method described in [38].371

– For recursive unconstrained types (e.g. lists, binary trees), we build samplers372

by using the Arbogen [19] tool. This tools implements the Boltzmann method373

presented in Sec.4. The tuning of the Boltzmann parameter is done at pre-374

processing time while the shape generation, and the conversion of this shape375

to a value of the targeted type is done at testing time.376

– Finally, for recursive constrained types (e.g. sorted lists, binary search trees),377

the previous techniques are mixed together to produce efficient generators:378

first, a targeted size n is drawn, then, a shape of size n is sampled. We379

then browse the generated shape, collecting constrained values to build a380

CSP as explained in Sec.3. This CSP is then fed to the SICStus Prolog [4]381

solver, which builds from it a generator using the PRT library [22]. Finally382

we put together shapes and constrained values. All of these steps are made383

at testing time, that is every time we have to generate a value we must solve384

a CSP. This is arguably the bottleneck of our architecture, but experiments385

still demonstrate the usability of our method.386

5.1 Experiments387

In this section, we focus on the performance of our automatically derived gener-388

ators. We measure the generation times (in seconds) obtained with our method389

12

for different constrained recursive types and by varying the size of the gen-390

erated structure. The types we are interested in are: lists sorted in ascend-391

ing order, association lists with unique keys, lists of pairs in ascending order392

((x, y) ≤ (x′, y) ⇔ x ≤ x′ ∧ y ≤ y′), binary search trees (unbalanced), functional393

maps (key-value stores as binary search trees) and quadtrees. These types are394

among the most frequents in the literature, and they only involve numerical395

constraints, which Testify is able to manage.396

Types Tar-
geted

Average]Objects time

increasing_list

10 8.50 2889 0.020
100 93.95 13691 0.004
1000 948.57 17763 0.003
10000 9392.45 79 0.757

assoc_list

10 8.49 2534 0.023
100 93.96 11949 0.005
1000 947.87 13660 0.004
10000 9406.92 76 0.786

bicollect

10 6.99 2492 0.024
100 93.04 6418 0.009
1000 947.73 16048 0.003
10000 9456.85 1596 0.037

binary_tree

10 9.00 238690 0.001
100 94.35 21214 0.001
1000 948.00 3416 0.006
10000 9740.00 1500 0.040

map

10 9.00 238690 0.001
100 94.37 21208 0.001
1000 947.08 3423 0.006
10000 9047.00 1276 0.047

quad_tree

10 8.00 3590507 0.001
100 93.88 228357 0.001
1000 947.79 23548 0.002
10000 9489.19 2191 0.027

Fig. 10: Generation time per object according to the size of the structure

The experience was to sample as much as possible constrained structures397

during one minute. The results are shown in Fig.10. For each type we report the398

size of the terms (number of [@collect] values) targeted, the average size of the399

generated terms, the number of terms sampled and the average time to sample400

one term. The computer running the experiments has an Intel Core i7-6700 CPU401

cadenced at 3.40GHz with 8 GB of RAM.402

As expected, at least for the tree-like types, we observe that the complexity403

is quite linear in the size of the sampled terms: the Boltzmann method keeps404

its promises and the use of a constraint solver proves to be fast enough to be405

used in our context. For most of these structures we manage to generate several406

hundred values per second, up to a certain structure size. These results prove the407

relevance of our method in the context of testing, as it can allow the user to fine-408

13

tune the generators to decide whether he wants to test his functions on several409

small structures and/or a few large ones. However, we may note that sampling410

of lists is much slower than sampling of trees. This is due to the fact that the411

Boltzmann method is not tailored for regular languages (such as list). It would412

probably be more efficient to use specialised algorithms for regular languages413

such as the one of [8].414

6 Related Work415

In this section we focus on related work dealing with constraint-based generation416

techniques. Constraint-based generation of test data has been exploited in white-417

box testing to produce inputs that will follow some execution paths, as well as in418

functional testing to generate constrained inputs. In [35], Senni applies constraint419

logic programming to systematically develop generators of structurally complex420

test data, e.g. red-black trees, in the context of Bounded-Exhaustive Testing.421

PBT, as exemplified by Quickcheck for Haskell, has been adapted to many422

programming languages but also to proof assistants to test conjectures before423

proving them, e.g. [18,10,32,13]. In [18] restricted classes of indexed families424

of types are provided with surjective generators. In [13], the authors propose425

the FocalTest framework for testing - conditional - conjectures about functional426

programs and for automatically generating constrained values. In this work, CP427

global constraints are not used and thus FocalTest does not take benefit from428

the corresponding efficient filtering ad hoc procedures.429

In the context of PBT of Erlang programs, De Angelis et al propose in [16]430

an approach to automatically derive generators of values that satisfy a given431

specification. Generation is performed via symbolic execution of the specifica-432

tion using constraint logic programming. A difference between their approach433

and ours is that we craft a suitable representation of a given type at static time,434

which is then compiled into an efficient generator. In [16], generators are built435

at execution time, while testing, which ultimately leads to a slower generation.436

The Coq plugin QuickChick helps to test Coq conjectures as soon as involved437

properties are executable. It allows the automatic synthesis of random genera-438

tors for algebraic data-types, recursive or not, and also the definition of simple439

inductive properties, e.g. a property specifying binary search trees whose ele-440

ments are between two bounds, to be turned into random generators of con-441

strained values [25]. The approach is narrowing-based, like in [14]. Such a binary442

tree is built lazily while solving the constraints found in the inductive property443

while in Testify, the shape of the data structure is randomly chosen and then444

its elements are obtained by solving constraints. This tool comes with differ-445

ent primitives or mechanisms allowing for some flexibility in the distribution446

of the sampled values. For example the user can annotate the constructors of447

an inductive data-type with weights that are used when automatically deriving448

generators. Furthermore, it also produces proofs of the generators correctness.449

In [12], the authors adapt a Boltzmann model for random generation of OCaml450

algebraic data-types, possibly recursive, but not constrained. Generators are au-451

14

tomatically derived from type declarations. In [14], Claessen et al. propose an452

algorithm that, from a data-type definition, a constraint defined as a Boolean453

function and a test data size, produces random constrained values with a uni-454

form distribution. However the authors show that this uniformity has a high455

cost. They combine this perfect generator with a more efficient one based on456

backtracking. Limiting the class of constraints and combining it with an efficient457

solving process, Testify can generate constrained values with a uniform distri-458

bution in a reasonable time. Some work focus on the enumeration or sampling459

of combinatorial structures, like lambda-terms, using Boltzmann samplers [27],460

Prolog mechanisms [9] or both [7]. These approaches are dedicated to objects461

of recursive algebraic data-types with complex constraints, like typed lambda-462

terms, closed lambda-terms, linear lambda-terms, etc. This kind of constraints463

is out of reach of our tool whose objective is not only to generate constrained464

values but also to provide the programmer with syntactic facilities to specify465

them.466

7 Conclusion467

We have proposed in this paper a technique based on declarative programming,468

to derive generators of random and uniform values for constrained recursive469

types. We have proposed a small description language for recursive structure470

traversal which allows us to build a custom CSP for each term to be generated.471

The code we generate is efficient, and outperforms a naive generation technique472

based on rejection, and allows us to generate large recursive structures quickly.473

Starting from the constraints attached to a type, we first sample the shape of the474

value to generate and then build a CSP that encodes the valid representations of475

the terms that have this shape. Then, our tool uses the SICStus Prolog constraint476

solver to filter invalid representations and produce a uniform solution sampler.477

Our technique is integrated into the Testify framework, which embeds these478

generators within a fully automatic test system. The generators derived by our479

framework are fast enough to allow the user to run tests each time he compiles480

his code. This would allow him to be able to detect bugs very quickly and481

fix them before they become potentially harmful. However, we still have a lot482

of work to do to improve Testify. For example, we can extend the constraint483

language to be able to handle types with shape constraints (e.g. balanced trees).484

This would require adapting the Boltzmann technique to random sampling of485

tree structures under constraints. Also, when dealing with a functional language,486

functions as values cannot be avoided: it will be necessary to have techniques for487

the derivation of generators for functions, and explore what kind of constrained488

functions (monotonic, bijective functions, etc.) appear in practice in programs.489

Moreover, in this paper we have only studied tree-like recursive data-structures.490

Some structures do not fit into this framework (e.g. graphs, doubly linked lists)491

and it would be interesting to see to what extent our methods adapt to these492

structures. Also, our current implementation tests functions by generating any493

random input, disregarding their body. This is naturally an important point of494

15

improvement. For example, one could imagine a static analysis of the body of the495

function, to conduct the input generation more precisely, and find bugs faster.496

Finally, our framework targets OCaml but the methods developed in this paper497

can be adapted to most programming languages and proof assistants.498

References499

1. Olfa Abdellatif-Kaddour, Pascale Thévenod-Fosse, and Hélène Waeselynck.500

Property-oriented testing: A strategy for exploring dangerous scenarios. In Gary B.501

Lamont, Hisham Haddad, George A. Papadopoulos, and Brajendra Panda, editors,502

Proceedings of the 2003 ACM Symposium on Applied Computing (SAC), March 9-503

12, 2003, Melbourne, FL, USA, pages 1128–1134. ACM, 2003.504

2. Thomas E. Allen, Judy Goldsmith, Hayden Elizabeth Justice, Nicholas Mattei,505

and Kayla Raines. Uniform random generation and dominance testing for cp-nets.506

J. Artif. Intell. Res., 59:771–813, 2017.507

3. Cláudio Amaral, Mário Florido, and Vítor Santos Costa. PrologCheck - property-508

based testing in Prolog. In Michael Codish and Eijiro Sumii, editors, Functional509

and Logic Programming - 12th International Symposium, FLOPS 2014, Kanazawa,510

Japan, June 4-6, 2014. Proceedings, volume 8475 of Lecture Notes in Computer511

Science, pages 1–17. Springer, 2014.512

4. Johan Andersson, Stefan Andersson, Kent Boortz, Mats Carlsson, Hans Nilsson,513

Thomas Sjöland, and Johan Widén. SICStus Prolog user”s manual. 1993.514

5. Florent Balestrieri and Michel Mauny. Generic programming in OCaml. Electronic515

Proceedings in Theoretical Computer Science, 285:59–100, 12 2018.516

6. Maciej Bendkowski, Olivier Bodini, and Sergey Dovgal. Polynomial tuning of517

multiparametric combinatorial samplers. In Markus E. Nebel and Stephan G.518

Wagner, editors, Proceedings of the Fifteenth Workshop on Analytic Algorithmics519

and Combinatorics, ANALCO 2018, New Orleans, LA, USA, January 8-9, 2018,520

pages 92–106. SIAM, 2018.521

7. Maciej Bendkowski, Katarzyna Grygiel, and Paul Tarau. Random generation of522

closed simply typed λ-terms: A synergy between logic programming and Boltzmann523

samplers. Theory Pract. Log. Program., 18(1):97–119, 2018.524

8. Olivier Bernardi and Omer Giménez. A linear algorithm for the random sampling525

from regular languages. Algorithmica, 62(1–2):130–145, feb 2012.526

9. Olivier Bodini and Paul Tarau. On uniquely closable and uniquely typable skele-527

tons of lambda terms. In Fabio Fioravanti and John P. Gallagher, editors, Logic-528

Based Program Synthesis and Transformation - 27th International Symposium,529

LOPSTR 2017, Namur, Belgium, October 10-12, 2017, Revised Selected Papers,530

volume 10855 of Lecture Notes in Computer Science, pages 252–268. Springer,531

2017.532

10. Lukas Bulwahn. The new quickcheck for isabelle - random, exhaustive and symbolic533

testing under one roof. In Chris Hawblitzel and Dale Miller, editors, Certified534

Programs and Proofs - Second International Conference, CPP 2012, Kyoto, Japan,535

December 13-15, 2012. Proceedings, volume 7679 of Lecture Notes in Computer536

Science, pages 92–108. Springer, 2012.537

11. Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test generation538

for worst-case complexity. In Proceedings of the 31st International Conference539

on Software Engineering, ICSE ’09, page 463–473, New York, NY, USA, 2009.540

Association for Computing Machinery.541

16

12. Benjamin Canou and Alexis Darrasse. Fast and sound random generation for542

automated testing and benchmarking in objective caml. In Proceedings of the 2009543

ACM SIGPLAN Workshop on ML, ML ’09, page 61–70, New York, NY, USA,544

2009. Association for Computing Machinery.545

13. Matthieu Carlier, Catherine Dubois, and Arnaud Gotlieb. Focaltest: A constraint546

programming approach for property-based testing. In José Cordeiro, Maria Virvou,547

and Boris Shishkov, editors, Software and Data Technologies - 5th International548

Conference, ICSOFT 2010, Athens, Greece, July 22-24, 2010. Revised Selected549

Papers, volume 170 of Communications in Computer and Information Science,550

pages 140–155. Springer, 2010.551

14. Koen Claessen, Jonas Duregård, and Michał H Pałka. Generating constrained552

random data with uniform distribution. Journal of functional programming, 25,553

2015.554

15. Simon Cruanes. QuickCheck inspired property-based testing for OCaml. https:555

//github.com/c-cube/qcheck.556

16. Emanuele De Angelis, Fabio Fioravanti, Adrian Palacios, Alberto Pettorossi, and557

Maurizio Proietti. Property-Based Test Case Generators for Free, pages 186–206.558

09 2019.559

17. Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltz-560

mann samplers for the random generation of combinatorial structures. Combina-561

torics, Probability and Computing, 13(4-5):577–625, 2004.562

18. Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. Combining testing and proving563

in dependent type theory. volume 2758, 06 2003.564

19. Frederic Peschanski et al. Arbogen, a fast uniform random generator of tree struc-565

tures. https://https://github.com/fredokun/arbogen.566

20. Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated567

random testing. SIGPLAN Not., 40(6):213–223, June 2005.568

21. Vibhav Gogate and Rina Dechter. A new algorithm for sampling CSP solutions569

uniformly at random. In Frédéric Benhamou, editor, Principles and Practice of570

Constraint Programming - CP 2006, 12th International Conference, CP 2006,571

Nantes, France, September 25-29, 2006, Proceedings, volume 4204 of Lecture Notes572

in Computer Science, pages 711–715. Springer, 2006.573

22. Arnaud Gotlieb and Matthieu Petit. A uniform random test data generator for574

path testing. J. Syst. Softw., 83(12):2618–2626, 2010.575

23. John Hughes. Quickcheck testing for fun and profit. In Michael Hanus, editor,576

Practical Aspects of Declarative Languages, 9th International Symposium, PADL577

2007, Nice, France, January 14-15, 2007, volume 4354 of Lecture Notes in Com-578

puter Science, pages 1–32. Springer, 2007.579

24. Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: A practical design580

pattern for generic programming. SIGPLAN Not., 38(3):26–37, jan 2003.581

25. Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. Gen-582

erating good generators for inductive relations. Proc. ACM Program. Lang.,583

2(POPL):45:1–45:30, 2018.584

26. Sophie Laplante, Richard Lassaigne, Frédéric Magniez, Sylvain Peyronnet, and585

Michel de Rougemont. Probabilistic abstraction for model checking: An approach586

based on property testing. ACM Trans. Comput. Log., 8(4):20, 2007.587

27. Pierre Lescanne. On counting untyped lambda terms. Theor. Comput. Sci.,588

474:80–97, 2013.589

28. Andreas Löscher and Konstantinos Sagonas. Targeted property-based testing. In590

Proc. of the 26th ACM SIGSOFT International Symposium on Software Testing591

and Analysis (ISSTA-17), pages 46–56, 07 2017.592

17

https://github.com/c-cube/qcheck
https://github.com/c-cube/qcheck
https://github.com/c-cube/qcheck
https://https://github.com/fredokun/arbogen

29. Kurt Mehlhorn and Sven Thiel. Faster algorithms for bound-consistency of the593

sortedness and the alldifferent constraint. In Rina Dechter, editor, Principles and594

Practice of Constraint Programming - CP 2000, 6th International Conference,595

Singapore, September 18-21, 2000, Proceedings, volume 1894 of Lecture Notes in596

Computer Science, pages 306–319. Springer, 2000.597

30. Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan Mar-598

cus, and Gil Shurek. Constraint-based random stimuli generation for hardware599

verification. AI Mag., 28(3):13–30, 2007.600

31. Michal Palka, Koen Claessen, Alejandro Russo, and John Hughes. Testing an opti-601

mising compiler by generating random lambda terms. Proceedings - International602

Conference on Software Engineering, 01 2011.603

32. Zoe Paraskevopoulou, Catalin Hritcu, Maxime Dénès, Leonidas Lampropoulos,604

and Benjamin C. Pierce. Foundational property-based testing. In Christian Urban605

and Xingyuan Zhang, editors, Interactive Theorem Proving - 6th International606

Conference, ITP 2015, Nanjing, China, August 24-27, 2015, Proceedings, volume607

9236 of Lecture Notes in Computer Science, pages 325–343. Springer, 2015.608

33. Carine Pivoteau, Bruno Salvy, and Michele Soria. Algorithms for combinatorial609

structures: Well-founded systems and Newton iterations. Journal of Combinatorial610

Theory, Series A, 119(8):1711–1773, November 2012.611

34. Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Smallcheck and lazy612

smallcheck automatic exhaustive testing for small values. In Proceedings of the613

First ACM SIGPLAN Symposium on Haskell, volume 44, pages 37–48, 01 2008.614

35. Valerio Senni and Fabio Fioravanti. Generation of test data structures using con-615

straint logic programming. In Achim D. Brucker and Jacques Julliand, editors,616

Tests and Proofs - 6th International Conference, TAP@TOOLS 2012, Prague,617

Czech Republic, May 31 - June 1, 2012. Proceedings, volume 7305 of Lecture Notes618

in Computer Science, pages 115–131. Springer, 2012.619

36. Mathieu Vavrille, Charlotte Truchet, and Charles Prud’homme. Solution sampling620

with random table constraints. In Laurent D. Michel, editor, 27th International621

Conference on Principles and Practice of Constraint Programming, CP 2021, Mont-622

pellier, France (Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs,623

pages 56:1–56:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.624

37. Jeremy Yallop. Practical generic programming in OCaml. pages 83–94, 01 2007.625

38. Ghiles Ziat, Matthieu Dien, and Vincent Botbol. Automated Random Testing of626

Numerical Constrained Types. In Laurent D. Michel, editor, 27th International627

Conference on Principles and Practice of Constraint Programming (CP 2021),628

volume 210 of Leibniz International Proceedings in Informatics (LIPIcs), pages629

59:1–59:19, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für In-630

formatik.631

18

	Automatic Synthesis of Random Generators for Numerically Constrained Algebraic Recursive Types

