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Abstract8

Constraint-based random testing is a powerful technique which aims at generating random test cases9

to verify functional properties of a program. Its objective is to determine whether a function satisfies10

a given property for every possible input. This approach requires firstly defining the property to11

satisfy, then secondly to provide a “generator of inputs” able to feed the program with the inputs12

generated. Besides, function inputs often need to satisfy certain constraints to ensure the function13

operates correctly, which makes the crafting of such a generator a hard task. In this paper, we are14

interested in the problem of manufacturing a uniform and efficient generator for the solutions of15

a CSP. In order to do that, we propose a specialized solving method that produces a well-suited16

representation for random sampling. Our solving method employs a dedicated propagation scheme17

based on the hypergraph representation of a CSP, and a custom split heuristic called birdge-first18

that emphasizes the interests of our propagation scheme. The generators we build are general19

enough to handle a wide range of use-cases. They are moreover uniform by construction, iterative20

and self-improving. We present a prototype built upon the AbSolute constraint solving library and21

demonstrate its performances on several realistic examples.22
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1 Introduction26

The objective of this work is to propose a technique for building an efficient and uniform27

sampler of solutions from a Constraint Satisfaction Problem (CSP).28

Generating uniformly distributed solutions to a Constraint Satisfaction Problem can be29

useful in various applications where fairness, diversity, unbiased testing, or comprehensive30

exploration of solution spaces is required. For resource allocation and fair division, applications31

like cloud computing and fair task distribution rely on uniform sampling to guarantee32

equity [27]. In machine learning, uniform solution generation helps creating diverse training33

datasets for constraint-based domains [1]. Cryptography benefits from uniform sampling for34

unpredictable key generation [6]. Also, applications like network testing leverage uniform35

sampling for unbiased evaluation of routing algorithms [12].36

Also, crafting a uniform sampler is particularly useful in the context of Property Based37

Testing [3] (PBT), and more specifically in random testing in which they are refered to as38

generators. Random testing is a black-box testing technique where programs are tested by39

generating random, independent inputs, provided by a generator. Results of the output40

are compared against software specifications to verify that the test passes or fails. While41

generarating inputs uniformly at random can be straightforward, it is often necessary to42

generate inputs that satisfy certain number of prerequisites, while assuring a good coverage43

of the input space and maintaining reasonable execution time. Frameworks à la QuickCheck44

usually deal with this problem by providing rejection sampler combinators: a candidate input45
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4:2 An Efficient and Uniform CSP Solution Generator Generator

is generated using a base generator and kept if it satisfies some constraints, or discarded46

otherwise. In the latter case, the test is not executed and the process is generally repeated47

a fixed number of time until a candidate is found or giving up. This approach is simple,48

both to use and to implement, and is uniform — given that the base generator is uniform49

itself. However, it might not be efficient in scenarios where the solution space is sparse or50

where constraints are complex. Constraint solving provides more powerful mechanisms to51

travel the solution space, making it a valuable improvement over repeated rejection sampling.52

Even though this improvement comes with the cost of importing the heavy machinery of a53

constraint solver, several works have shown that it makes the overall process more time and54

resource-efficient when the solution space is sparse[22, 26, 29, 2].55

QuickCheck’s rejection sampling provides a straightforward way to create a generator,56

albeit one that may be very slow. In contrast, constraint-solving techniques adopt a more57

computationally intensive process to construct a fast generator. Our proposed incremental58

approach seeks to strike a balance between these, aiming to achieve an optimal trade-59

off between the speed of generator construction and runtime efficiency. This balance is60

particularly beneficial in scenarios where there is little or no prior information about how61

many times the generator will be used. In such cases, the upfront cost of constructing a62

highly optimized generator through constraint solving may be unjustified if the generator63

is used only a handful of times. Conversely, relying solely on a quickly constructed, but64

slow generator, may result in suboptimal performance if the generator is reused extensively.65

By incrementally refining the generator as needed, our approach adapts to different usage66

patterns, providing a flexible and efficient solution regardless of the frequency of generator67

usage. This scalability is achieved through our novel selection structure, which is designed to68

handle more complex forms, such as non-fixed-size structures (e.g., list matrices), a challenge69

that many existing approaches fail to address. Instead of immediately generating examples,70

our method abstracts away the generation process, allowing for dynamic adjustment and71

refinement of the generator based on constraints. It thus incrementally generates a generator72

that encapsulates the desired properties and constraints, hence the title of this paper.73

1.1 Contributions of the paper74

A general method to produce fast and self-improving uniform samplers of CSP solutions75

using a dedicated solving algorithm for random generation.76

A graph based split heuristic and propagation scheme, well fit to partition a problem into77

independent sub-problems.78

A heuristic Huffman-like representation for the solutions which minimizes the cost of79

uniform choices.80

A property based testing API, à la quickcheck, allowing for a transparent usage of81

our hybrid approach between rejection sampling and constraint based solving. The82

implementation is available at:83

https://osf.io/u4r5q/files/osfstorage?view_only=84af8ee65a6c495d98cb7b7bfad8c54b84

1.2 Outline85

This paper is organized as follows: Section 2 defines the concept of generators in general86

and gives some insight of what is expected from a good generator. Section 3 introduces87

the main mechanisms needed to build a constraint-based generators. Section 4 is the main88

contribution of this work: it addresses the problem of building a propagation-exploration89

scheme well-suited for the design of a constraint based generator. Section 6 presents our90

https://osf.io/u4r5q/files/osfstorage?view_only=84af8ee65a6c495d98cb7b7bfad8c54b
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implementation and show its performances on some benchmark. Finally, Section 7 presents91

the related works and Section 8 summarizes our work and discusses its future continuations.92

2 What is a (Good) Generator?93

CSP’s search spaces are defined by variables to which are associated finite bound domains.94

A point in this search space in generally called an instance, but for our purpose we will call95

those samples.96

▶ Definition 1 (Sample). Given a set of variables V, and a set of domains D denoting the97

possible values of variables, a sample is a total mapping from variables to values. We note98

the set of samples S = V → D99

We distinguish two kinds of samples, the ones that satisfies all the constraint of a given100

CSP i.e. the solutions, and the ones that violate at least one constraint.101

▶ Definition 2 (Solution Generator). Given a CSP (V,D, C), a solution generator is a function
g that takes a random state and produces a solution s ∈ S, such that:

∀r, ∀c ∈ C, c(g(r)) holds

where the first quantification is over all the possible random states r.102

This definition ensures that every generated sample satisfies all constraints of the CSP.103

Moreover, the use of random states1 is needed so that the generation process can be made104

reproducible by controlling or restoring the state. Good generators should be:105

Correct: They should respect the constraints they are subject to. For a data type106

representing positive integers, a generator should ensure that it only produces positive107

integers.108

Uniform: They should be able to thoroughly explore the input space. In other lines of109

work, diverseness is ensured by building surjective generators (i.e. every possible solution110

can be generated with a non-zero probability [9]). Here we have a stronger requirement:111

every possible solution must be generated with the same probability2.112

Efficient: Testing time includes generating time, since test cases are generated dynamic-113

ally. Hence, to be of practical use, generators must maintain reasonable performance, in114

particular in large codebases that run tests frequently.115

Property-based testing frameworks à la QuickCheck generally resort to rejection sampling116

to produce random values that meet specific constraints. While this technique meets the117

first two of the above requirements, it can lead to a significant overhead, in particular when118

a large portion of generated values are rejected. The impact on performances depends on119

the efficiency of the rejection process and the likelihood of rejection. We briefly recall how it120

works.121

1 We do not specify the actual representation of random states, as it is irrelevant to our discussion and
depends on the underlying implementation of the generator.

2 Some framework focus on building corner-case generators, generally defined in an ad-hoc fashion, in
which case uniformity is irrelevant. This is a complementary approach that we are not focused on in
this work.

CP 2025
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2.1 Rejection Sampling122

In the most general sense, rejection sampling is the approach that consists in generating123

samples in a super-set of the set of objects we are interested in, repeatedly until a sample124

lying in the set of interest is found. For instance, in order to generate a point inside the disk125

of radius 1 in R2, one could generate points (X, Y ) in the square [−1, 1]2 until X2 + Y 2 ≤ 1.126

In a constraint solving context, this means generating samples within the bounds of the127

problem until a sample that satisfy the constraints is found. Algorithm 1 illustrates this128

method.129

Algorithm 1 Rejection sampling procedure
1: function sample(V,D,C)
2: candidate ← spawn (V,D) ▷ draw at random in (V,D)
3: if sat(candidate, C) then
4: return candidate
5: else
6: return sample(V,D,C)

This algorithm takes as input a set of variables V, their associated range of values D,130

and a set of constraints C. The spawn function generates a candidate at random (for some131

probability distribution P) from the given variables and their domains. Then, the sat132

function evaluates whether the generated candidate satisfies all the constraints in C. The133

procedure is called recursively until a solution is found.134

Note that the number of iteration of this algorithm is a random variable. The probability135

of accepting a sample X at line 3 is the probability P (X ∈ A) that X lies inside the solution136

space A. Provided that this probability is non-zero, this algorithms terminates, and its137

number of iterations follows a geometric law of parameter P(A). It thus makes 1
P(X∈A)138

iterations in expectation.139

Finally, a key observation is that Algorithm 1 implements the probability distribution P140

conditioned to only draw elements of the solution space A. In particular, if the spawn function141

draws uniform samples in the domain D, then Algorithm 1 is a uniform sampler of solution.142

The contribution of the present paper is to devise a good spawn function that can guarantee143

that this algorithm is uniform while providing good performance.144

3 Constraint-Based Generators145

In this article, we use a constraint-based approach for random sampling. To achieve this, we146

rely on the general abstract solving method described in [21], which we summarize here.147

Algorithm 2 constructs a cover of the solution space using abstract elements (e.g., boxes,148

octagons, polyhedra, etc.). This cover consists of two sets: inner elements (I) and outer149

elements (O). The set I under-approximates the solution set, while I ∪O over-approximates150

it. The algorithm starts by initializing an abstract element and inserting it into O. It then151

iterates through the following steps: an element from O is selected, filtered, and, if it satisfies152

the constraints, added to I. If it does not, it is split into sub-elements that are reinserted153

into O.154

As presented, this algorithm may not terminate. In practice, various termination criteria155

can be employed, such as limiting the size of the elements considered or the depth of156

the solving tree. Note that, in general, split elements can overlap without preventing the157
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Algorithm 2 Abstract solving method
1: function solve(X ,D, C) ▷ X :variables, D: domains, C: constraints
2: I ← ∅ ▷ inner solutions
3: O ← {init(D)} ▷ outer solutions
4: while O ̸= ∅ do
5: e← select(O)
6: e′ ← filter(e, C)
7: if e′ ̸= ⊥ then
8: if solution(e′, C) then
9: I ← I ∪ {e′}

10: else
11: O ← O∪ split(e)
12: return I, O

algorithm from terminating and producing correct results. However, in our case, ensuring158

they are non-overlapping is necessary for uniformity, as we will discuss later.159

Although the algorithm is parametric with respect to the representation being used, we160

only use boxes in our implementation, as they enable straightforward and efficient uniform161

random sampling. Recall that given variables v1, . . . , vn over finite continuous domains162

d1, . . . , dn, a box is defined as a Cartesian product of intervals within d1×· · ·×dn. A random163

sample of a box is thus the Cartesian product of random samples of such intervals.164

3.1 Constrained Based Sampling165

In [29], authors build upon this constraint-solving method an algorithm for uniform sampling166

under constraints, as shown in Algorithm 3. It repeatedly selects an element e from either167

the inner or outer sets using a select function. Here, select performs a weighted choice168

based on the volume of the elements, with the largest elements having the best chance of169

being chosen. We discuss in the next section the design of a data structure that enables an170

efficient implementation of this function. The algorithm generates a candidate value i within171

e. If e belongs to the inner set or i satisfies the constraints C, the algorithm returns i; it172

repeats these steps otherwise.173

Algorithm 3 Random Sampling for Covers
1: function generate(inner,outer,C)
2: while true do
3: e ← select(inner,outer)
4: i ← spawn(e)
5: if e ∈ inner ∨ sat(i,C) then return i

This algorithm ensures uniform sampling under three conditions: the elements in I ∪O174

must not overlap, points within each element e must be sampled uniformly P (i | e) = 1
v(e) ,175

and the probability of selecting an element e must be proportional to its volume (P (e) =176
v(e)∑

e′∈I∪O
v(e′)

). These conditions ensure that the sampling process remains uniform across177

the domain, giving all points in the union of elements an equal likelihood of being chosen.178

▷ Claim 3. Algorithm 3 samples solutions uniformly. While uniformity was an implicit goal179

in [29], we provide a formal proof to establish it rigorously.180

CP 2025
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Figure 1 Solving state obtained for depth d of resolution for a problem with two variables
constrained by x2 + 4y2 − 4 ≤ 0 and 2y2 − x ≤ 0. Darker boxes indicate inner elements.

Proof. In appendix A. ◁181

Refining the solving process can potentially reduce the rejection rate — though not always182

— but it never increases it. However, this refinement inevitably increases the selection time.183

At some point, this may even become counterproductive; when the increase in selection time184

exceeds the gains obtained from reducing the rejection rate, further refinement is no longer185

beneficial. Our goal is to find the best trade-off between constraint solving and rejection186

sampling, minimizing unnecessary exploration while ensuring efficiency.187

3.2 Efficient selection of an abstract element188

In order to implement the select function, we need a data structure for storing a collection189

of abstract elements that supports:190

efficient sampling of an elements with probability proportional to its volume;191

and (we will see later), an efficient way to replace an abstract element with a collection192

of smaller elements.193

In [29], sorted list in decreasing order of volume are used for element selection, so that the194

elements with highest probability are met faster during sampling. However, if elements are of195

the same size, this approach offers no advantage, as all selections become equally likely. Also,196

they do not require to update their structure in their work. We can do better by arranging197

these elements in a binary tree. The idea is to store the abstract elements at the leaves of198

the tree and to maintain, in every node, the sum of the volumes of all the leaves below that199

node. Using such a data structure, drawing a abstract element proportional to its volume200

corresponds to drawing a uniform real variable between 0 and the total volume of the tree,201
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and to recursively descend in the tree, choosing between the left and right child based on202

their weights. This is illustrated in Algorithm 4.203

Algorithm 4 Random generation of an abstract element using the tree data structure
1: function randomTreeSelect(T )
2: r ← Unif(0, volume(T ))
3: return treeSelect(r, T )

Require: 0 ≤ r < volume(T )
1: function treeSelect(r,T )
2: if T is a leaf then return the abstract element stored in T

3: (TL, TR)← the children of T

4: if r < volume(TL) then return treeSelect(r, TL)
5: else return treeSelect(r − volume(TL), TR)

Here, the cost of selecting an element is proportional to the length of the path from204

the root to the selected leaf. Given the volume of every abstract element (and thus their205

probability of being drawn), there is an optimal way to arrange these elements in the tree206

in order to minimise the expected cost of the generation. Information theoretic results tell207

us that the expected path length between the root and the sample is lower bounded by the208

entropy of the probability distribution, that is209

H =
∑

x

px ln 1
px

210

where the sum ranges over the abstract elements stored in the tree, and px is the sampling211

probability of element x. The optimal way to organise the tree in order to remain close to212

this lower bound is to use a Huffman tree [16]:213

start from a collection of leaves,214

iteratively pair the two smallest elements of the collection as a binary node,215

this process terminates when every leaves belong to the same tree.216

A tree built this way has the property that its expected path length to a leaf is at most H+ 1.217

Unfortunately, the good properties of Huffman trees are hard to maintain efficiently when218

we update the collection of abstract elements, which we need for in the adaptive algorithm219

presented in Section 3.3. To circumvent this issue, we use the following heuristic:220

1. before doing any sampling, we do a first solving pass until a certain depth;221

2. after this pre-processing, we construct a Huffman tree T based on the volumes of the222

resulting elements;223

3. then, during the iterative sampling process, every time we need to split an abstract224

element e into a collection of smaller elements (e1, e2, . . . , ep), we construct a Huffman225

tree T ′ for (e1, e2, . . . , ep) and we replace the leaf e in T with T ′.226

It is worth noting that the replacement of the last sampled leaf can be optimised by keeping227

a pointer to this last leaf, rather than traversing the tree a second time to find it.228

The initial Huffman tree T constructed at step 2 thus potentially evolves away from229

its optimal shape as we update leaves. However, since the elements that have the highest230

probability to be selected (and thus split) are the bigger ones, we expected our heuristic231

to maintain some balance in the tree. Our benchmarks, presented in Section 6, seem to232

show that this data structure performs well in practice. An interesting algorithmic problem233

would be to investigate the real performance of this idea, and potentially find a better data234

structure, which is a work in progress.235

CP 2025
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3.3 Incremental and Adaptive Generators236

From a practical point of view, we cannot really replace an inefficient sampler with a generator237

based on an extremely expensive constraint solving mechanism. This would simply replace238

a slow generation speed, by a faster one preceded by a huge overhead due to solving time.239

This is especially prejudicial when the generator is only used a handful of time.240

Iterative solvers are commonly used when dealing with complex constraint satisfaction241

problems where finding an exact solution is computationally infeasible or impractical. Instead242

of attempting to solve the entire problem in one step, iterative solvers work incrementally,243

refining the solution repeatedly until a certain termination criterion is met.244

We therefore propose to use constraint resolution mechanisms parsimoniously: first, we245

will target in priority on certain parts of the problem, identified on the fly, whose filtering can246

greatly improve the performance of random generation. Second, we try to amortize the cost247

of the resolution steps (filtering and exploration) during the generation. For example, every248

n time a generator is called, we can perform a resolution step. Thus, the more a generator is249

used, the more it improves. To achieve this, the generator embeds an internal solving state250

that evolves with each step. This state retains information from previous resolution steps,251

allowing the generator to improve progressively rather than starting from scratch each time.252

Algorithm 2 revolves around two primary decisions: selecting which element to refine253

and determining how to refine it. On the one hand, intuitively, the focus should be on larger254

elements with higher rejection rates, as they are more critical to the rejection rate and, thus,255

the efficiency of the whole process. On the other hand, sampling also requires choosing an256

element, with larger elements being more likely to be selected. This leads to the question of257

whether sampling’s focus on larger elements can be used to help guide the solving process.258

For each element in our cover, we track the number of times it was selected and record259

the number of times it successfully produced a sample. We also track the total number260

of successes and failures for the whole cover. When our algorithm fails to produce a valid261

solution within a selected element, we must then decide whether it is necessary to split it262

or not. To do this, we base our choice on its acceptance rate. If it falls below the global263

acceptance rate, we proceed to refine that element, meaning we split it and replace it within264

the cover with the resulting sub-elements. Otherwise, it is left unchanged. This dynamic265

adjusting of the refinement process can lead to a faster convergence and avoids over-splitting,266

which can deteriorate the element selection procedure. This is illustrated by Algorithm 5.267

Algorithm 5 Sampling-Guided solving
1: function generate(inner,outer,C)
2: while true do
3: e ← select(inner,outer)
4: i ← spawn(e)
5: if e ∈ inner ∨ sat(i,C) then
6: return i

7: else if rate(e) < global(inner,outer) then
8: refine e

4 Graph Representation for Random Sampling268

The constraint hypergraph of a constraint satisfaction problem is a hypergraph in which269

the vertices correspond to the variables, and the hyperedges correspond to the constraints.270

Hypergraph representations can be integrated with various constraint-solving algorithms,271
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such as backtracking, constraint propagation, and local search. The hypergraph structure272

guides the search for a solution. For our needs, an interesting idea is the detection of273

connected components. Indeed, the partition of the constraint hypergraph into connected274

components correspond to a partition of the problem into statistically independent sub275

problems. This means that the sampling for each component can be decorrelated from the276

sampling of the others. In other words, if the constraint graph consists of two (or more)277

connected components, it is then possible to generate solutions independently in the different278

components, and then combine the results. Intuitively, leveraging this independence should279

speed up the random generation process. We also give a heuristic argument.280

The acceptance rate of a set of constraints C is the probability that every constraint in C281

accepts a random sample. We note denote by PC this probability. The expected number of282

rejections before a sample satisfies all the constraints in C is thus 1
PC

. When there are two (or283

more) disjoint components in the graph, the set C can be split into two independent subsets,284

C1 and C2, with respective supports V1 and V2 and we have PC = PC1PC2 . Leveraging the285

independence of the variables in V1 and V2 by performing the rejection sampling independently286

for the two components, yields a expected number of rejections of the order of287

1
PC1

+ 1
PC2

instead of 1
PC1PC2

288

which is largely smaller when the constraints Ci are hard to satisfy, i.e. when the PCi
are289

small. Of course, a more precise analysis would require to take into account the cost of290

sampling a leaf in the Huffman tree and the cost of generating a uniform sample inside an291

abstract element. However, we can already foresee that splitting the Huffman tree into the292

two trees for the two connected components, and reducing the number of variables will only293

moderately affect the performance in the algorithm. We can conclude with confidence that294

leveraging the independence of the components, will be beneficial.295

In practice, at initialization, the CSP is divided into (disjoint) connected components,296

and a sampling cache is associated with each one. This cache stores the partial samples297

generated for each component, allowing the algorithm to reuse previously computed samples298

and avoid redundant computations.299

We benefit from this idea by using the cache to identify and prioritize the solver’s efforts300

on components that exhibit high rejection rates. Empty caches indicate difficulty in finding301

valid samples, encouraging the solver to select a variable to split in these components. By302

adapting to the performance of individual components, the solver converges toward a locally303

optimal configuration.304

4.1 The bridge-first split305

The iterative process of splitting and filtering gradually ensures that certain constraints are306

locally satisfied, allowing them to be removed from the graph. Whenever a constraint is307

removed, the solver checks whether its removal disconnects the graph. When this is the case,308

the graph is split into connected components, enabling their independent handling.309

Constraints become redundant when their validity is guaranteed by current domain310

assignments. Our implementation recomputes connected components whenever a constraint311

is removed by the solver so as to be able to exploit the independence of the components.312

To achieve this, we develop a propagation scheme and an exploration heuristic that help313

reduce the connectivity of the constraint graph. For each edge, we maintain information314

on whether it is a bridge or not. A bridge is an edge whose removal increases the number315

of connected components in the graph. We identify bridges using Tarjan’s algorithm [25].316

CP 2025
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Figure 2 Deletion of the constraint c6 leads to two independent CSPs.

Tracking which edges are bridges is useful for guiding exploration, since variables that are317

part of a bridge are particularly interesting for splitting. When a constraint is removed, if it318

was a bridge, the connected components (CCs) are recomputed. Otherwise, the removal is319

checked to determine whether it introduced new bridges, without recalculating the connected320

components. If a bridge is detected, we attempt to eliminate it, as its removal would disconnect321

the graph and thus improve the sampler’s performance. This is done by prioritizing the322

variables in the bridge’s support during splitting steps.323

5 Constraint Based Testing with GeGen324

We have implemented the techniques presented in this paper in a prototype called GeGen,325

which stands for Generator Generator. PBT frameworks like QCheck [4], which is the326

OCaml port of QuickCheck, provide generator for atomic types (bool, ints, floats, . . . )327

and combinator for composite type (pairs, tuples, . . . ). In presence of recursive types, the328

traditional approach is to provide the user with a generator of sized values, that is user has to329

provide a size, and the generator builds values with that specific size. Most implementations330

lack robust support for testing scenarios that require constraints over the generated inputs.331

GeGen bridges this gap by introducing variable generators and constraints, enabling the easy332

integration of constraint-solving capabilities in a PBT framework. For instance, QCheck333

provides the function find_example whose signature is given below. Given a generator of a334

values of type t, it builds a generator of values of t that satisfy a certain predicate335

336
1 f ind_example : ( ’ a −> bool ) −> ’ a Gen . t −> ’ a Gen . t337338

If a value satisfying the predicate f is found (within a certain number of tries), it is339

returned. GeGen mimics this approach by providing an API that users can manipulate340

similarly, however the inner mechanism differ notably as we build, solve and sample from a341

CSP during the generation process.342

5.1 GeGen’s Generators343

GeGen’s generators differ fundamentally from traditional QuickCheck-style generators as344

they produce symbolic variables rather than concrete values. Traditional property-based345

testing frameworks generate fixed values like random integers or floats. In contrast, GeGen’s346

generators operate at a symbolic level which makes possible constraint composition and347

solving. For instance, instead of directly generating a number, GeGen creates a symbolic348

variable that represents the number and associates it with a range of possible values. This349

symbolic variable acts as a declaration on the solver’s side. Additionally, instead of applying350

a predicate to verify wether a value satisfies or not the property being tested, GeGen’s351
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predicates impose constraints on this variable such as “the number must be even” or “the352

number must be less than another variable” that are collected to construct a CSP. Finally, we353

apply the previously discussed solving and sampling techniques to the constructed CSP. For354

example, to generate circles within a given square in QCheck, we can use the following code:355

356
1 f ind_example357

2 ( pa i r ( pa i r i n t i n t ) i n t )358

3 ~ f : ( fun ( ( x , y ) , r ) −>359

4 r > 0 && x >= r && x <= 100 − r && y >= r && y <= 100 − r && r >= 10)360361

The find_example function generates random integer values for x, y, and r, then applies362

the given predicate to check whether the generated circle satisfies the constraints. This363

process repeats until a valid example is found or the search limit is exhausted. Note that364

here, int is an atomic generator that produces random integers and pair is a combinator that365

constructs a generator of pairs from two base generators.366

The interest of our approach is that the same code, when linked against our library, will367

yield identical results but in a significantly more efficient manner, and using a fundamentally368

different mechanism. Instead of directly sampling random values for x, y, and r, we369

constructs a symbolic representation of the problem. From the solver’s perspective, a370

constraint satisfaction problem (CSP) with three floating-point variables v1, v2 and v3 is371

formulated. However, this approach abstracts certain details about the algebraic structure372

of the type. Therefore, a reconstruction function is designed alongside the CSP, so that373

once a sample s is drawn, it can be re-assembled to a value of the correct type. In this374

particular case, the function is f(s) = ((s(v1), s(v2)), s(v3)). It ensures that once the solver375

produces a valid assignment for the symbolic variables, the corresponding concrete values are376

reconstructed in a way that respects the intended algebraic structure. Finally the predicate,377

instead of returning a truth value will actually build the equivalent constraint system. In378

essence, this allows us to decouple the problem-solving phase from the data generation phase379

(at the API level) while ensuring that the generated values maintain the correct type.380

5.2 GeGen’s language381

The constraint language used in GeGen supports arithmetic and boolean expressions. It382

includes: arithmetic operation (addition, multiplication, etc.), Boolean logic (comparisons,383

conjunctions, disjunctions, negations), and variables. We build upon those generators for more384

complex types such as tuples and lists by composing the different elements of a generator.385

GeGen extends standard arithmetic and Boolean operators by overriding them to facilitate386

the construction of constraints, making it possible to define a CSP in a manner that closely387

resembles programming its logical predicate counterpart. This intuitive approach aligns the388

construction of constraints with familiar programming paradigms, simplifying the transition389

from predicates to constraints.390

For instance, consider a predicate that verifies whether a list is sorted. This predicate391

can naturally be expressed in a functional style as follows:392

393
1 let r e c i s_sor t ed = function394

2 | [ ] | [ x ] −> true395

3 | x1 : : x2 : : r e s t −> x1 <= x2 && is_sor t ed ( x2 : : r e s t )396397

This predicate can be applied to concrete lists of integers to determine whether they are398

sorted. This is what is done when doing rejection sampling. Using GeGen, the predicate399

takes another meaning as it operates on lists of variables to dynamically construct a CSP.400

The overloaded operators automatically translate the predicate logic into corresponding401

constraints. For example:402
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403
1 open GeGen404

2 let r e c i s_sor t ed = function405

3 | [ ] | [ x ] −> true_406

4 | x1 : : x2 : : r e s t −> x1 <= x2 && is_sor t ed ( x2 : : r e s t )407408

Here, the open GeGen directive brings in scope the operators <= and && (among others),409

so that instead of computing a boolean value, the is_sorted function now builds a constraint.410

Beside that the only difference is the use of the symbolic constraint true_ instead of the411

builtin OCaml boolean true, which can’t be avoided as OCaml does not permit the overriding412

of litterals. This approach preserves the logical structure and readability of the predicate413

while generating a constraint representation that can be used to solve CSPs.414

6 Experiments415

Our implementation is written in OCaml in a functional style. We use the default pseudo-416

random number generator (PRNG) from the OCaml standard library, an instance of the417

LXM [24] family of PRNGs. GeGen relies on the AbSolute solver [21] to handle constraints.418

This solver provides most of the necessary functionalities for uniform random sampling,419

including volume measurement and efficient space paving with large elements [30]. It420

guarantees a non-overlapping solution cover, simplifying uniform distribution construction.421

Our implementation is open-source and available at:422

https://osf.io/u4r5q/files/osfstorage?view_only=84af8ee65a6c495d98cb7b7bfad8c54b.423

6.1 Benchmark424

We have written generators using our framework for several realistic examples: the convex425

problem defines the predicate for star-convex polygons, i.e. the vectors corresponding to two426

consecutive edges of the polygons have a negative cross-product. The diagdom, idempotent,427

symmetric and orthogonal problems, define the predicates for some well known classes428

of matrices. The distrib, itvcover and sorted represent respectively the predicate for429

valid distribution of probability i.e., list of positive values that sum to one, interval-covering430

list that is a list that contains a set of intervals that cover a specific range without gaps431

and finally the set of sorted lists in increasing order. We compare our approach against432

QCheck’s standard rejection sampler, as it serves as a baseline for property-based testing.433

This comparison is relevant since we have designed an API that allows users to write the434

same specifications while seamlessly generating samples using our method instead.435

Table 1 presents the number of samples generated by GeGen and QCheck for various436

problem instances. Each row corresponds to a specific problem. The first column lists the437

problem names. The second column indicates the problem size parameters, denoted as |V|, |C|.438

The remaining columns report the number of generated samples for different time constraints439

(0.1, 1, and 2 seconds of generation time), with results shown separately for GeGen and440

QCheck. Best result for each are shown in bold font. The problem sizes were selected to441

ensure that trends in sample generation could be clearly observed while maintaining a fair442

evaluation of both methods. The measurements were conducted on a machine with a 12th443

Gen Intel(R) Core(TM) i5-1235U processor and 15 GiB of RAM.444

https://osf.io/u4r5q/files/osfstorage?view_only=84af8ee65a6c495d98cb7b7bfad8c54b
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6.2 Results Analysis445

GeGen QCheck
problem |V|, |C| 0.1 1 2 0.1 1 2

sortedlist4 4,3 7076 292589 621378 17999 527764 1107631
sortedlist8 8,7 410 32985 76783 9 1047 2191
sortedlist12 12,11 28 4891 12421 0 0 0

convex3 6,3 752 54829 114298 5 415 868
convex4 8,4 203 9182 19997 0 0 2
convex5 10,5 82 3526 7357 0 0 0

diagdom3 9,4 823 39282 83120 1052 25354 52677
diagdom4 16,5 141 6454 13680 0 25 54
diagdom5 25,6 20 984 2176 0 0 0
itvcover3 6,5 5522 225252 477677 0 29 62
itvcover4 8,4 4258 132492 279720 0 1 3
itvcover5 10,9 2724 87048 174027 0 0 0

symmetric2 4,1 5617 428439 901930 7842 242921 493929
symmetric3 9,3 7178 233311 490004 0 1 3
symmetric4 16,6 2176 136995 280146 0 0 0
orthogonal2 4,5 1457 59079 125073 0 0 0
orthogonal3 9,8 132 5110 10693 0 0 0
orthogonal4 16,12 3 596 1329 0 0 0
idempotent2 4,10 1494 93988 205829 0 15 33
idempotent3 9,29 35 3590 8295 0 0 0
idempotent4 16,76 0 41 158 0 0 0

Table 1 Number of samples per generation time

The results indicate that GeGen consistently outperforms QCheck, generating significantly446

more samples across nearly all problem types and sizes. While QCheck performs adequately447

for smaller problem instances, its performance drops as problem complexity increases, often448

failing to generate any samples for larger cases. In contrast, GeGen scales effectively,449

maintaining high sample generation rates even for more complex problems. Also, the450

performance of the rejection sampler remains stable over time while the ones of the generator451

built using GeGen improves as the process progresses. This trend is illustrated in Figure 3,452

which depicts the time in seconds (y-axis) required to generate the i-th sample (x-axis), for453

10000 samples. GeGen’s times (solid line), and QCheck’s (dashed line) are shown on a single454

problem, sorted lists of size n, to highlight this feature of our generators, although the same455

behaviour can be noticed on problems of table 1. Notable spikes in the curves correspond to456

garbage collection cycles, which are particularly apparent for small values of n.457

Figure 3a demonstrates that for small list sizes, QCheck and GeGen exhibit similar458

performance. In fact, QCheck marginally outperforms GeGen, as the rate of sorted lists459

among lists of size 3 is relatively high. However, as n increases, the rejection rate also rises,460

causing GeGen to surpass QCheck. By the time n=9n=9, GeGen is already outperforming461

QCheck by three orders of magnitude, as shown in Figure 3c. Note that, due to the scale,462

the GeGen line appears very close to the x-axis. For larger values of n, rejection sampling463

via QCheck becomes impractical, and thus only the results for GeGen are presented. This464

figure shows that the incremental nature of our generators allows them to scale effectively,465
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(a) n = 3 (b) n = 6 (c) n = 9

(d) n = 12 (e) n = 15 (f) n = 20

Figure 3 Evolution of the generation time (in seconds) for sorted list of size n, with both QCheck
and GeGen

handling larger n more efficiently.466

Uniformity Validation: we have validated the uniformity of our generators by compar-467

ing their distributions with those generated by a rejection sampler. The variation between468

the distributions is measured using a chi-squared test, which quantifies how far apart the469

distributions are. Our results confirm that our generators produce distributions similar to470

the rejection sampler, indicating they are uniform.471

7 Related Works472

Random sampling of solutions of constrained systems is a well studied subject and the473

literature is full of techniques for SAT [28, 23, 10] models, and some results for CP models474

exists, but mainly for finite domains CSPs [7, 11, 13, 26, 15, 22].475

Closer to our work are [2, 17, 29, 5]. In [2], the author present a technique for automatically476

deriving test data generators from a predicate expressed as a Boolean function. In order477

to speed up random generation they use the lazy behaviour of the predicate to know its478

result on sets of values, rather than individual values. Once they have computed a set479

of values for which the predicate is going to return false, they remove all of these values480

from the original set. They implement this by relying on Haskell’s call-by-need semantics481

which applies the predicate to a partially-defined value. This can be seen as an ad-hoc482

use of consistency on a partial assignment. Our work goes further by not only integrating483

a constraint resolution engine into the random generator, but in addition, this engine is484

dedicated to the manufacturing of relevant representations for random sampling.485

In [29], the authors propose a constraint-based generation framework where constraint486
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solving, which can be costly, is handled at compilation time via preprocessing, while uniform487

sampling occurs at runtime. While their approach is similar to ours, we find ours more488

practical as it is incremental and does not require preprocessing. Additionally, they do not489

focus on tuning the solving method for uniform sampling, instead fixing the solver’s depth490

and size in advance, whereas we adapt constraint solving based on the sampler’s output. More491

importantly, their approach cannot handle recursive types, a limitation our method overcomes492

effectively. In [5], a Constraint Logic Programming approach for Property based testing493

for Erlang programs, the authors generate random tests for complex properties involving494

Modified Condition/Decision Coverage, pattern matching, and higher-order functions. This495

is equally useful but orthogonal to our wors as their focus is put on code coverage and not496

of uniformity. A similar idea, in the field of computational statistics, is Adaptive Rejection497

Sampling [19, 18] (ARS). The idea is to use a piecewise linear density function instead of a498

single uniform envelope density function. Each time a sample has to be rejected, the rejected499

value can be used to improve the piecewise approximation of the targeted distribution. This500

therefore reduces the chance that the next attempt will be rejected. This can however only501

be applied for sampling from for specific families of densities.502

Further from our field, other random sampling frameworks include the so-called recursive503

method from Nijenhuis and Wilf [20] and the framework of Boltzmann sampling [8]. These504

frameworks provide a generic and efficient way to sample structured data such as trees,505

algebraic data types, etc. but are not suitable for numerical data. Finally, Monte-Carlo506

Markov Chains (MCMC) are another well-known tool for sampling discrete structures [14].507

However, here again, tuning a Markov Chain to make it efficient requires some specific508

knowledge on the objects to sample, which make it unsuitable for generically sampling into509

an arbitrary CSP solution space.510

8 Conclusion511

In this work, we have developped a method for building generators that are unifom, efficient,512

and incremental. Our approach can be summarized as the gradual transition from rejection513

sampling to a form of constraint-based one. Users have a generator that adapts to their needs:514

If the generator is rarely used, there is no need to spend time solving complex problems,515

and the underlying search space remains largely unprocessed by the solver. As a result, the516

generator behaves more like a rejection sampler. Conversely, if the generator is heavily used,517

the solver will more aggressively filter the search space, aiming to amortize the resolution518

cost through improved generation speed. The techniques we propose holds for both finite519

and continuous domains as the number of solutions in a given search-space, whether it is520

finite or not, is abstracted by the notion of weight. Also, our method for splitting the CSP521

into independant pieces, which greatly improves our samplers, can be reused in other context.522

For example, it makes the parallelization of the solving process straightforward since each523

component can be treated independently.524

Our approach has several areas for improvement. We do not backtrack, assuming that525

our exploration choices always enhance the sampler, which is not guaranteed. Our generator526

synthesis is general and may be less efficient than constraint-specific methods. Constrained527

data structures often exhibit symmetries, suggesting that symmetry-breaking techniques528

could be a natural extension. Additionally, non-uniform methods may offer a better balance529

between bug-finding effectiveness and computational cost. While uniformity can be expensive,530

surjective generators may provide sufficient coverage. Finally, incorporating corner-case531

analysis into solution sampling could further improve results in future work.532
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A Proof of correctness of Algorithm 3616

Proof for Claim 3617

Proof. Assume spawn(e) spawns points uniformly within an element e, i.e., for any i ∈ e,618

P (i | e) = 1
v(e) , where P (i | e) is the probability density function describing the likelihood619

of sampling a point i within the element e, and v(e) is the volume of e. Let S be the set620

of all solutions satisfying constraints C. The probability of sampling i ∈ (I ∪ O) involves621

selecting an element e ∋ i and spawning i uniformly within e. The selection probability of e622

is proportional to its volume:623

P (e) = v(e)∑
e′∈I∪O v(e′) .624

Thus, the joint probability of selecting e and spawning i is:625

P (i is spawned) = P (e) · P (i | e) = v(e)∑
e′∈I∪O v(e′) ·

1
v(e) = 1∑

e′∈I∪O v(e′) ·626

Now, a point sampled with this process, without proper rejection, may not belong to S.627

If e ∈ I, all points i ∈ e satisfy C, so i is always accepted. If e ∈ O, i is accepted only if628

i ∈ S, and otherwise we repeat the sampling process. It follows that Algorithm 3 returns a629

particular solution i ∈ S either if:630

it samples i at the first attempt,631

or if the first attempt fails to produce a solution and i is sampled in a subsequent attempt.632

The probability of sampling a particular solution i ∈ S is thus633

P (i) = 1∑
e′∈I∪O v(e′) + P (fail)P (i)634

= 1
(1− P (fail))

∑
e′∈I∪O v(e′)635

636

where P (fail) is the probability that a uniform element in I ∪ O does not satisfy C. This is637

constant for all i ∈ S, proving uniformity.638

We wrote this proof in a discrete setting but a similar proof can be written in the639

continuous. ◁640
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