
Finding solutions by finding inconsistencies?

Ghiles Ziat1, Marie Pelleau2, Charlotte Truchet3, and Antoine Miné1

1 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005
Paris, France

2 Nice, Sofia-antipolis
3 TASC, LS2N UMR 6004, Univ. Nantes

Abstract. In continuous constraint programming, the solving process
alternates propagation steps, which reduce the search space according
to the constraints, and branching steps. In practice, the solvers spend a
lot of computation time in propagation to separate feasible and infeasi-
ble parts of the search space. The constraint propagators cut the search
space into two subspaces: the inconsistent one, which can be discarded,
and the consistent one, which may contain solutions and where the search
continues. The status of all this consistent subspace is thus indetermi-
nate. In this article, we introduce a new step called elimination. It refines
the analysis of the consistent subspace by dividing it into an indetermi-
nate one, where the search must continue, and a satisfied one, where the
constraints are always satisfied. The latter can be stored and removed
from the search process. Elimination relies on the propagation of the
negation of the constraints, and a new difference operator to efficiently
compute the obtained set as an union of boxes, thus it uses the same
representations and algorithms as those already existing in the solvers.
Combined with propagation, elimination allows the solver to focus on the
frontiers of the constraints, which is the core difficult part of the problem.
We have implemented our method in the AbSolute solver, and present
experimental results on classic benchmarks with good performances.

1 Introduction

Constraint solvers generally alternate two steps: propagation and exploration.
The propagation step reduces the domains of the variables using the constraints.
The exploration step adds hypotheses to divide the problem into several smaller
sub-problems. In this article, we are interested in continuous constraint solving,
where the variables have real values. In this case, the resolution of a problem
usually consists in a paving of the solution space, which is not computer repre-
sentable in general, using elements which are simple enough to manipulate (often
floating-point boxes). This paving may correspond to an outer approximation or
over-approximation of solutions, as in Ibex [6], or may correspond to an inner
approximation or under-approximation as in [7].

? The work was supported, in part, by the project ANR-15-CE25-0002 Coverif from
the French Agence Nationale de la Recherche, and in part by the European Research
Council under Consolidator Grant Agreement 681393 – MOPSA.

2 Ghiles Ziat, Marie Pelleau, Charlotte Truchet, and Antoine Miné

The efficiency of a solver depends on the choices made by the exploration
process, these choices being often guided by heuristics. On discrete variables,
such heuristics can for example try and provoke early failures (such as fail-first
[9] or dom/w deg [4]).

On continuous variables, classic heuristics include: largest first [13], which
consists in splitting the largest domain; round robin, where the domains are
processed successively; or maximal smear [8], choosing the domain with the
greatest slope based on the derivatives of the constraints. More recently, and
closer to our work, Mind The Gaps [1] uses the idea from [8, 13] and uses partial
consistencies to find interesting splitting points within the domain, according
to the “gaps” in the search space: splitting the domains by taking into account
such gaps reduces the search space.

In this paper, we focus on covering the entire solution space of continuous
problems. We propose to add a new step, complementary to constraint propa-
gation, in the solving process: the elimination step. This step divides the search
space into two sub-spaces: one containing only solutions, and the other where
the constraints are indeterminate — it may contain solutions as well as non-
solutions. Our solving method alternates three steps: propagation, elimination,
and exploration. It offers another way of reasoning on the constraints, since we
are not only exploiting the constraints’ consistencies (as does propagation) but
also the constraint inconsistencies. With this improved reasoning, the interesting
zones of the search space are better targeted: zones without solutions are dis-
carded by propagation, and zones with only solutions are set aside by elimination
into the solution space, which means in practice that they also are excluded from
the search. The search effort can then focus on the indeterminate space — the
part of the search space effectively requiring deeper exploration by the solver.

Our new step can be seen as a new contraction, in the same framework as
the contractors described in [10] and used in Ibex [6] to perform a smarter ex-
ploration. We add an automatic propagation on the negation of the constraints,
to identify subspaces containing only solutions. We thus reason on the negation
of the constraints, hence we compute sets which are not boxes: to overcome this
issue, we also add an operator on boxes to efficiently compute the difference of
two boxes (or the complementary of one box in another) as a union of boxes.
Thus, our method can be integrated into any solver without changing its domain
representation nor modifying the propagators.

Our elimination phase relies on a notion of consistency to divide the search
space and guide the search, similarly to Mind The Gaps [1] where consistency
is also used to guide the search. But we go a step further by not only trying to
identify the inconsistent parts of the search space (the “gaps”), but by using set
complement to identify sub-spaces containing only solutions.

Our method is tailored to output an outer approximation as well as an inner
approximation of the solution set: when the size of the indeterminate part is
small enough and exploration stops, we can either include the indeterminate
part with the definite solution space found by elimination steps to get an outer

Finding solutions by finding inconsistencies 3

approximation, or return only the solution space found by elimination which is
an inner approximation.

In fact, our solver can provide within the same process both an inner and an
outer approximation, and due to the fact that the computed boxes better fit the
constraints’ shapes, this comes at no cost according to our experiments. We have
tested our method on both the Coconut[16] and the MinLPLib[5] benchmarks.
Our results show that first, our method computes both the inner and outer
approximation with no time overhead, and second, it produces fewer boxes as
an output, which makes the computed solution much more tractable.

This paper is organized as follows. Section 2 presents formally classic continu-
ous constraint solving, on which our work is based. Section 3 introduces our new
solving step: elimination. Section 4 presents experiments with our new solving
method. Finally, Sect. 5 concludes and discusses future work.

2 Preliminaries

This section recalls basic notions of continuous Constraint Programming (CP).
For a more detailed presentation, we refer the reader to [14, Chap. 16].

2.1 Constraint Satisfaction Problems

We consider a Constraint Satisfaction Problem (CSP) defined by: a set of n
variables X = {x1, . . . , xn}; the domain of each variable D = {d1, . . . , dn}, i.e.,
xk ∈ dk,∀k ∈ [1, n]; and a set of m constraints C = (C1, . . . , Cm). A possible
assignment of the variables is a tuple in D = d1×· · ·×dn. A solution of the CSP
is an element of D satisfying all the constraints in C. We denote as S the set of all
solutions, i.e., S = {(s1, . . . , sn) ∈ D | ∀i ∈ {1, . . . ,m}, Ci(s1, . . . , sn)}. We also
denote as SC the solution set for the constraint C alone: SC = {(s1, . . . , sn) ∈
D | C(s1, . . . , sn)}.

In the CP framework, variables can either be discrete or continuous. In this
article, we focus on continuous, real-valued variables. Domains of variables are
intervals of R. We also assume that the bounds are (finite) floating point num-
bers, to be computer-representable. They can be either excluded or included.
Let F be the set of finite floating point numbers. For a, b ∈ F , we define a
real-interval as the conjunction of two half-spaces {x ∈ R | a / x / b} where
/ ∈ {<,≤}, and let I be the set of all such intervals.

A Cartesian product of intervals is called a box. We note B = In the set of
boxes of dimension n. Note that our definition of interval encompasses intervals
with excluded end-points which will be useful later.

For continuous CSPs, with domains in I, the exact solution set S ⊆ Rn is
generally not computer-representable. Constraint solvers usually return a collec-
tion of boxes with floating-point bounds containing the solutions, the union of
these being an over-approximation of S.

4 Ghiles Ziat, Marie Pelleau, Charlotte Truchet, and Antoine Miné

2.2 Consistency

The notion of local consistency is central in CP. We recall the definition of Hull-
consistency [3], one of the classic local consistencies for continuous constraints.

Definition 1 (Hull-Consistency). Let x1, . . . , xn be variables over continu-
ous domains represented by intervals d1, . . . , dn ∈ I, and C a constraint. The
domains are said to be Hull-consistent for C if and only if D = d1 × · · · × dn is
the smallest floating-point box containing the solutions for C in D.

Intuitively, no bound of a consistent box D can be tightened without losing a
solution of C. Given a constraint C over domains d1, . . . , dn, an algorithm that
computes locally consistent domains d′1, . . . , d

′
n that contain the same solution set

as C in d1×· · ·× dn is called a propagator for C. Naturally, ∀k ∈ [1, n], d′k ⊆ dk.
Given a constraint C and domains d1, . . . , dn, we will write HC(d1, . . . , dn) the
corresponding Hull-consistent domains and ρC : B → B a propagator for C.
While we only refer to the Hull-consistency in this work, our method is based
upon the propagator notion and holds for any kind of consistency.

The domains which are locally consistent for all constraints are the largest
common fixpoints of all the constraint propagators [2, 15]. In practice, propaga-
tors often compute over-approximations of the locally consistent domains. In the
following, we will use the standard algorithm HC4 [3], which propagates contin-
uous constraints, relying on the syntax of the constraints and interval arithmetic
[11], although our method could be combined with other propagators. HC4 gener-
ally does not reach Hull consistency, in particular in case of multiple occurrences
of the variables in the constraints.

Local consistency computations can be seen as deductions, performed on
domains by analyzing the constraints. If the propagators return the empty set,
the domains are inconsistent and the problem has no solution. Otherwise, non-
empty local consistent domains are computed. This is often not sufficient to
accurately approximate the solution set. In that case, choices are made on the
variable values. For continuous constraints, typically a domain d is chosen and
split into two (or more) parts, which are in turn narrowed by the propagators.
The solver alternates propagation and split phases until a given precision is
reached, i.e all the boxes which are still considered are smaller than a given
parameter. Of course, as soon as a box is proven to contain only solutions, it
can be removed from the search space and added to the solution set. Upon
termination, the collection of boxes returned covers the solution set S, under
some hypotheses on the propagators and splits [2].

A solving method is said to be complete if it returns an over-approximation
of the solution set (no solution is missed). It is said to be sound if it returns
an under-approximation of the solution set (only solutions are returned). For
problems with real variables, the solving method cannot be both complete and
sound in general asbeing sound (returning only solution), requires the result
to under-approximate the solution space, and being complete (returning all the
solutions) requires the result to over-approximate the solution space. In practice,
solving methods are often complete and not sound.

Finding solutions by finding inconsistencies 5

Algorithm 1 Solving without / with elimination (in pink)

1: function solve(D, C, r, elim) . D: domains, C: constraints, r: real, set elim to
2: false for classic solving, true for elimination
3: sols ← ∅ . sound solutions
4: undet ← ∅ . indeterminate solutions
5: explore ← ∅ . boxes to explore
6: e =init(D) . initialization
7: push e in explore

8: while explore 6= ∅ do
9: e← pop(explore)

10: e← filter(e, C)
11: if e 6= ∅ then
12: if satisfies(e, C) then
13: sols ← sols ∪ e
14: else
15: if τ(e) ≤ r then
16: undet ← undet ∪ e
17: else
18: if !elim then
19: push ⊕(e) in explore . Classic solving process
20: else
21: (S,E) = elimination(e, C) . Solving with elimination
22: sols ← sols ∪ S
23: push ⊕(E) in explore

2.3 Solving method

In this article, we rely on the general abstract solving process described in [12],
instantiated with the interval domain. The solver thus operates on boxes, as de-
fined above. Algorithm 1 gives the pseudo-code of the abstract solving method,
where τ ∈ B → R is the precision measure and ⊕ ∈ B → ℘(B) is the split
operator. In this section we have the elim parameter set to false, thus we do
not consider the part highlighted in pink. By alternating propagation and ex-
ploration, Algorithm 1 builds a disjunction of boxes that covers the solution
space. It uses three auxiliary functions: init ∈ D → B, filter ∈ B → B, and
satisfies ∈ B × C → {true, false}. Firstly, init creates a box from the initial
domains of the problem. Then, filter corresponds to the propagation loop: it
applies the propagator for each constraint in turn. Finally, satisfies checks
whether a box satisfies all the constraints, that is, if it contains only solutions.
This function corresponds to a contractor as defined in [6].

This solving method works as follows: at each step, the current box is tight-
ened using the propagators on the constraints (function filter). After propa-
gation, if the tightened box is not empty, three cases are possible:

– If the box contains only solutions (function satisfies), then it is directly
added to the set of solutions sols.

6 Ghiles Ziat, Marie Pelleau, Charlotte Truchet, and Antoine Miné

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

x1

x
2

(a) Default solving

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

x1

x
2

(b) Solving vith elimination

Fig. 1: Default solving: 329 inner boxes, 256 outer boxes. Inner boxes represent
69% of the coverage area. Computation time 0.015s. Solving with elimination:
125 inner boxes, 256 outer boxes. Inner boxes represent 98% of the coverage
area. Computation time: 0.008s

– Otherwise, if the box is small enough with respect to a parameter r (τ(e) ≤
r), then it is added to the set of indeterminate solutions undet — i.e., the
box, which may contain both solutions and non-solutions, is considered small
enough to be left out of the search.

– Finally, if the size of the box is larger than r and may contain solutions,
as elim is set to false, then it is divided using a split operator ⊕ and the
process is repeated on the resulting boxes.

Figure 1(a) shows the result obtained with Algorithm 1 with elim set to false,
for a problem with two variables x1 ∈ [1, 100] and x2 ∈ [−1.5, 1] constrained by
cos(ln(x1)) > x2. Note that this solving method can either produce an under-
approximation of the solution set by considering only the inner elements, or
an over-approximation by considering all the resulting elements. Figure 1(a)
shows that some of the inner elements could be merged to obtain fewer, but
larger inner boxes. This observation reflects the fact that some exploration steps
are unnecessary. The elimination step we introduce in the next section pushes
the reasoning based on the constraints one step further in order to avoid these
superfluous splitting steps.

3 Elimination

The propagation step reduces the search space by removing non-consistent sub-
spaces. Elimination aims at reducing the search space by focusing on the fron-
tiers of the problem. This is done in three steps: computing the elimination for
each constraint, combining the result with the domains with a new difference
operator, and finally integrate this mechanism in the solving process.

3.1 Elimination for one constraint

We introduce here the concept of elimination for a single constraint. It relies on
the constraint propagator to over-approximate the set of instantiations that can

Finding solutions by finding inconsistencies 7

RΘ

Fig. 2: Given the constraint y ≤ x3, in blue, the box R over-approximates the
solutions and the hatched box Θ over-approximates the inconsistencies.

not be solutions. We will refer to these instantiations as inconsistent instantia-
tions. By elimination, the rest of the search space can only contain solutions.

In the remainder of the subsection, given a constraint C and a box D =
d1 × · · · × dn, we will write DC the set of instantiations of D that satisfy C
and DC and, the — complementary — set of inconsistent instantiations w.r.t C.
Thus, we have DC = D \DC . As DC , DC can be uncomputable, so we compute
an over-approximation. For a single constraint, this can be achieved simply by
reusing the propagation, over the negation of the constraint.

Definition 2. Let x1, . . . , xn be variables in domains d1, . . . , dn, and C a con-
straint on x1, . . . , xn. We define a function θC : B → B such that θC(d1, . . . , dn) =
ρ¬C(d1, . . . , dn).

Combining this function with propagation, we partition D relatively to the
satisfiability of C. Let SC = ρC(d1, . . . , dn) and SC = θC(d1, . . . , dn) be re-
spectively the over-approximation of Dc and DC , we differentiate three kinds of
instantiations:
– the instantiations that belong to SC and not to SC : they are guaranteed to

be inconsistent,
– the instantiations that belong to SC , and not to SC : they are guaranteed to

be consistent,
– the remaining instantiations that belong to both Sc and SC : they are inde-

terminate.
Figure 2 shows an example of this partitioning. For the constraint y ≤ x3

(filled with blue), the box SC (dashed), computed through propagation, over-
approximates the solutions and the box Θ (hatched in green), computed by
applying propagation over the negation of the constraint, over-approximates the
inconsistencies. We can see that the complement of Θ under-approximates the
set of solutions, while the complement of R under-approximates the set of incon-
sistencies. The intersection Θ∩R can contain both solutions and inconsistencies.

Once this partitioning is done, the inconsistent part can be discarded (as
usual) and the consistent one can be directly added to the set sols of solutions.
What remains is the indeterminate space in which the solving process continues.
This principle is then generalized to the case of several constraints: the consistent
part is the intersection of all the consistent parts associated to each constraint.

8 Ghiles Ziat, Marie Pelleau, Charlotte Truchet, and Antoine Miné

Symmetrically, the inconsistent part is the union of all the inconsistent parts
associated to each constraint. What remains is the indeterminate part.

Remark In practice, in the case of continuous constraints, elimination can rely
on the original propagation algorithms of the considered constraint, since we
can easily compute the negation of a constraint (based on predicates <,=,≤). It
would also be valid for discrete constraints provided that the same property holds.
Indeed, primitive constraints could be dealt with elimination, but handling global
constraints would require to specifically define their negations and introduce
dedicated propagators.

The indeterminate space is defined as an intersection of boxes, which results
in a box. Hence, the solving process continues within a box, as in a classic
propagation-based solver, except that the box is possibly smaller as we intersect
the result of propagation with the result of elimination. However, SC \SC is not
necessarily a box. Computing this set difference requires taking the complement
of a box relative to another box. In the following section, we define a set difference
operator over boxes. It computes the difference as a set of boxes, that can be
directly added to sols.

3.2 Difference operator

Given two boxes B1 and B2, their difference B1 \ B2 is not necessarily a box.
However, we can express it as a collection of boxes that covers B1 \ B2. To
guarantee a non-redundancy property over the result, this cover should be a
partition. This would prevent boxes from overlapping and have instantiations
covered by several boxes. However, a cover is sufficient to have a sound and
complete resolution method, and is easier to build as we will see in the current
section. Our difference operator should satisfy the following properties:

Definition 3 (Difference operator). A difference operator 	 : B×B → ℘(B)
is a binary operator such that ∀B1, B2 ∈ B:
(1) |B1 	B2| is finite;
(2) ∀b ∈ (B1 	B2)⇒ b ∩B2 = ∅;
(3) B1 = (B1 ∩B2) ∪

⋃
{ b ∈ B1 	B2 }.

The first condition ensures that the solving method produces a finite set of
boxes. The second one ensures that the operator eliminates from the box B1

the values inside the box B2. Finally, the third condition guarantees that the
difference of B1 and B2, union B2, covers the initial box B1. When used inside
the solving process, the second condition is related to soundness and the third
one to completeness.

To define our difference operator on boxes, we represent the boxes using con-
straints. A box can be defined as a conjunction of constraints B =

∧
i=1,...,p ci,

where each constraint ci = ±xi / ai, with / ∈ {<,≤}, gives a lower or an upper
bound — not necessarily included — on xi.

Finding solutions by finding inconsistencies 9

Note that it is mandatory to be able to express both strict and non strict
inequalities. If it were not the case, a problem would arise for constraints of the
form ±xi ≤ ai, as their negation ±xi > ai would not be exactly representable,
and we would have no way to ensure property Def. 3.2. As the difference operator
is used to compute S, an under-approximation of the set of solutions, adding to
S the closure of boxes which should actually be open, could add to it points that
are not solutions to the problem, and thus break the soundness criterion.

Each ci defines a half-space, and the difference between a box and a half-
space is still a box. A first step is thus to compute the difference between two
boxes, by considering each half space independently, as shown on Fig. 3(b).

Definition 4 (Difference for boxes). Let B1 and B2 be two boxes, with B2

represented as the set of constraints C2. The difference of B1 and B2 is:

B1 	B2 , {B1 ∩ (¬c) | c ∈ C2} (1)

This naive method can result in widely overlapping boxes in the output.
Nevertheless, it is an acceptable difference operator as it satisfies Def. 3:
(1) B1 	 B2 returns a set that, associates a box to each constraint in B2. The

number of constraints in B2 is finite, hence this set is finite (Def. 3.(1)).
(2) By definition of the intersection, the condition Def. 3.(2) is satisfied as each

box in the result is included in B1.
(3) Finally, Def. 3.(3) is also satisfied: B1 	B2 can be rewritten as B1 ∩B2. No

solution is lost as B1 is entirely covered by B2 and B1 	B2.
Figure 3 shows an example of the application of the difference operator on

two boxes. Figure 3(a) gives the initial boxes B1 and B2, with B2 represented by
the constraints {c1, . . . , c4}. Figure 3(b) shows the result of the naive difference
operator. Here, B1 \ B2 is covered by three elements, one per constraint of C2,
after removing the constraints that, intersected with B1, yield the empty set (c4
in this case). Overlapping boxes in the output appear in a darker shades. This
overlapping implies that some instantiations may be covered by more than one
box: the result is redundant.

We now propose an improved difference operator in order to obtain non-
overlapping boxes when building a partition of B1 \B2.

Definition 5 (Non-redundant difference for boxes). Let B1 and B2 be
two boxes and B2 is represented by the set of constraints C2 = {c1, . . . , cp}. The
difference of B1 and B2 is defined as:

B1 	B2 ,

B1 ∩ (¬ci) ∩
⋂
j<i

cj | i ∈ {1, . . . , p}

 (2)

For similar reasons to the naive difference operator, Def. 3.(1)–(3) is also
satisfied for the non-redundant difference operator. Additionally, we strengthen
the property that B1	B2 is a cover for B1 \B2 by making this cover a partition,
i.e, the elements of B1 	 B2 are pairwise disjoints: we ensure that, for any pair
of boxes bi, bj ∈ B1 	B2 such that i 6= j, we have bi ∩ bj = ∅.

10 Ghiles Ziat, Marie Pelleau, Charlotte Truchet, and Antoine Miné

c2

c3
c4

c1

B1

B2

(a) Initial boxes

b1

b2

b3

(b) Redundant
difference

b1

b2

b3

(c) Non-
redundant
difference

Fig. 3: Comparison between naive and non-redundant difference operator: B1 	
B2.

Proposition 1. B1 	B2 is a partition of B1 \B2.

Proof. If |B1 	 B2| = 1 then, trivially, B1 	 B2 is a partition of B1 \ B2. If
|B1	B2| > 1, we have to prove that the elements ofB1	B2 are pairwise disjoints.
Let C2 = {c1, ..., cp} be the constraints of B2, and bi, bj be respectively the i-th
and the j-th value of B1 	B2 according to (2), with i, j ∈ 1..p and i 6= j. Then,
bi is constrained by ¬ci. Assuming w.l.o.g. that i < j, then bj is constrained by
ci, and bi∩bj = ∅. We also have to prove that B1 = B1 \B2∪B2, or equivalently,
∪ibi = B1 \B2: let x ∈ ∪ibi be an instanciation of B1. By definition of B2, there
is at least a constraint ci ∈ C2 such that x does not satisfy. Let i0 be the smallest
such i, then x ∈ bi0 . Thus, the whole of B1 \B2 is covered by the boxes bi.

Going back to the example in Figure 3, Fig. 3(c) shows the result of the non-
redundant difference operator and shows that there are no overlapping darker
zones (shown in a darker shade). Here, B1 \ B2 is now partitioned into three
elements, one per constraint of C2 (once again ignoring c4 which leads to an
empty box).

3.3 New solving step

Computing S̃ = θC(d1, . . . , dn)∩ ρC(d1, . . . , dn) by employing both propagation
and elimination reduces the search space, because it allows the solver to quickly
identify parts of the solutions. In fact, when the propagation of ρC is done,
we propose an elimination step θC before splitting. Rather than performing
arbitrary splits anywhere on a box, the elimination identifies parts of the box
containing only solutions, and allows the solver to perform splits on the part of
the search space that can not be discriminated as containing only solutions, nor
as containing no solution. More precisely, elimination makes the split happen
exactly at the frontier of the constraint.

Algorithm 2 gives the pseudo-code associated with the new elimination step.
This algorithm processes elements that do not satisfy at least one constraint.

Finding solutions by finding inconsistencies 11

Algorithm 2 Elimination function

1: function elimination(e, C) . e: box, C: constraints
2: enon−cons ← complement(e, C)
3: econs ← e	 enon−cons

4: S ← ∅
5: for ei ∈ econs do
6: S ← S ∪ ei

return (S,⊕(e ∩ enon−cons))

The function complement computes enon−cons, an over-approximation of the
inconsistencies. Then, the difference operator is used to find the boxes containing
only solutions. Finally, solving continues in the indeterminate search space e ∩
enon−cons (instead of e).

Figure 1(b) shows the results obtained with our propagation/elimination/split
loop on the CSP given previously. We can see that, for the same precision, results
are much more satisfactory: we require less elements to cover more space and
in a comparable amount of time, showing that this technique is able to deduce
more relevant frontier than using a simple propagation/split loop.

In the following section, we analyze the performance of our solving method
and discuss its different possible configurations.

4 Experiments

We have implemented our technique for boxes in the open-source solver AbSo-
lute4. This solver is based on the method presented in [12], where we integrated
our elimination step. We rely on the abstract domain representation in AbSolute,
which is based on constraints, to efficiently implement the constraint negation
necessary for the elimination step. The unified constraint representation makes it
possible to have an implementation of the difference operator that is lightweight
and generic.

4.1 Protocol

We tested our method on problems with continuous variables from the MinLPLib
and the Coconut5 benchmarks. For minimization problems, we first transform
them into satisfaction problems, which can be handled by the solver. This trans-
formation consists in adding an objective variable to the problem that will act
as the value to minimize. Default bounds for unconstrained variables are set to
−107 for the lower bound and 107 for the upper bound as our method requires
the domains of the variables to be bounded. All of the runs are made with a

4 https://github.com/mpelleau/AbSolute
5 All informations about the problems can be found at http://www.gamsworld.

org/minlp/minlplib/minlpstat.htm and http://www.mat.univie.ac.at/~neum/

glopt/coconut/Benchmark/Benchmark.html

12 Ghiles Ziat, Marie Pelleau, Charlotte Truchet, and Antoine Miné

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Classic solving

W
it

h
el

im
in

a
ti

o
n

25%50%

(a) Comparison of ratio Vi/(Vi +Ve)

50 100 150 200 250 300

50

100

150

200

250

300

Classic solving

W
it

h
el

im
in

a
ti

o
n

25%50%

(b) Comparison of time

Fig. 4: Comparison between the classic solving method and our method. On the
left, comparison of the ratio of inner volume Vi over total volume (sum of inner
and outer (Ve) volume), a mark above the bisector (in plain blue) means that
our method is better than the classic solving. On the right, comparison of the
computation time, a mark above the bisector (in plain blue) means that our
method is slower than the classic solving.

time limit set to 300 seconds and no memory limit. Precision was fixed to 10−3

(i.e., the size limit where exploration stops), and branching depth was limited
by 50. The solver was run on a Dell server with two 12-core Intel Xeon E5-2650
CPU at 2.20GHz, although only one core was used, and 128GB RAM.

We have tested the solving with the elimination step against the default
solving method of the AbSolute solver over all of the problems that the solver’s
functionalities (types, constraint, arithmetic functions) are able to cover, that is
197 problems.

4.2 Description

Figure 4 summarizes the results obtained with our method compared to the
classic solving. Figure 4(a) compares the ratio δ of inner volume of the cover.
It corresponds to Vi/(Vi + Ve) where Vi and Ve are respectively the inner and
outer volume. This ratio is a quality measure of the solving method: the closer
this ratio is to one, the bigger is the part of the coverage that will only contain
solutions. In other words, it is an indicator of the size of the indeterminate space
remaining at the end of the resolution. In this figure, a mark above the bisector
means that our method is better than the classic one. We can see that on most
of the instances, our method is able to find a coverage with a much smaller
indeterminate space.

Figure 4(b) compares the computation time of our method to the classic one.
In this figure, each mark above the bisector means that our method is slower than

Finding solutions by finding inconsistencies 13

the classic one. As can be seen on this figure, our method is slightly slower, the
elimination performing additional computation during one iteration. However,
solving all the 197 problems took 1157 seconds with our method against 1032
seconds with the classic solving method.

Table 1: Comparing solving with and without elimination step

with elimination without elimination
problem |X |, |C| #I #E δ t #I #E δ t

COCONUT problems

abs1 1,2 2047 3072 0.99 0.04 4092 4096 0.99 0.06

aljazzaf 2,3 2309 19405 0.58 0.89 0 14319 0 0.54

allinitu 1,5 318 5066 0.07 3.26 0 5066 0 2.50

ampl 2,2 2 13930 0.99 0.66 0 13107 0.0 0.46

booth 1,2 90 45 0.12 0.11 0 45 0 0.13

cpr2ani10-10 10,10 0 14 0 0.09 0 14 0 0.09

dispatch 3,4 47 10642 0.07 3.39 0 15426 0 2.42

ex1411 2,5 1.78e6 2.59e6 0.98 217.08 1.95e6 3.74e6 0.98 237.89

ex1413 4,3 4884 34893 0.25 0.52 0 32698 0 0.78

ex newton 2,5 638 950 0.95 0.45 729 892 0.93 0.57

griewank 1,2 19972 31868 0.99 1.44 29645 35105 0.98 2.30

h-s-f1 2,2 0 29 0 0.01 0 29 0 0.01

h73 3,4 19 1284 0.89 0.06 0 978 0 0.05

h76 3,4 24 174 0.04 0.05 0 82 0 0.05

hs23 6,2 825 2132 0.99 0.43 1315 1801 0.98 0.58

kear11 8,8 0 844 0 0.05 0 844 0 0.05

mickey 2,5 4315 12709 0.99 2.40 8372 9858 0.99 2.73

monfroy 3,4 0 745 0 0.08 0 745 0 0.05

nonlin1 2,3 1550 1978 0.95 0.49 2059 1772 0.82 0.69

nonlin2 3,2 4238 10560 0.92 0.39 8643 10692 0.88 0.42

tame1 2,3 29 3004 0.51 0.21 0 3177 0 0.31

zy2 3,3 6260 28147 0.99 1.00 13179 22499 0.74 0.85

MINLP problems

csched1a 23,29 0 8192 0 6.44 0 8192 0 4.85

deb10 130,183 0 0 0 0.01 0 0 0 0.01

dosemin2d 119,166 0 0 0 0.181 0 0 0 0.177

eg all s 26,8 1 54 0.99 2.99 0 16 0 2.47

eg int s 26,8 1 54 1.00 2.85 0 16 0 2.35

elf 39,55 0 3272 0 9.56 0 3276 0 8.84

ex1222 4,4 8 60927 0.01 1.39 0 61787 0 0.97

ex1223a 10,8 746 27097 0.01 20.60 0 48283 0 21.40

ex1223b 10,8 820 44084 0.01 40.22 0 500510 0 29.41

ex1252a 35,25 0 11 0 0.03 0 11 0 0.02

ex1264a 36,25 0 10544 0 8.80 0 10544 0 6.26

ex1266 96,181 0 20340 0 78.44 0 20340 0 75.08

gbd 5,5 576 31829 0.19 1.27 0 22927 0 0.93

prob03 2,3 0 625979 0 10.81 0 581831 0 6.77

14 Ghiles Ziat, Marie Pelleau, Charlotte Truchet, and Antoine Miné

procsel 8,11 0 2603850 0 289.98 0 2603850 0 271.85

qapw 256,451 0 0 0 1.201 0 0 0 1.233

sep1 32,30 0 26615 0 20.05 0 26615 0 19.24

st e13 4,3 378 3102 0.02 0.05 0 18 0 0.50

st miqp2 4,5 1352 38104 0.38 2.29 0 4564 0 0.31

st miqp3 2,3 27 1117 0.24 0.03 0 1051 0 0.02

st miqp4 5,7 3 21921 0.01 4.46 0 39152 0 3.43

st miqp5 14,8 187 2080 0.01 4.71 0 6324 0 2.38

st test1 2,6 1559 244337 0.03 18.70 0 231494 0 15.97

st test2 3,7 4521 81280 0.06 46.85 0 338122 0 32.60

st test4 6,7 116 33995 0.01 3.13 0 22076 0 2.29

st test5 12,11 22 29520 0.01 7.82 0 11167 0.00 7.55

synthes1 7,7 97 33747 0.01 4.18 0 1285 0 5.16

tls2 25,38 0 18030 0 27.46 0 18030 0 26.81

windfac 14,15 0 19561 0 6.66 0 19561 0 6.51

For reasons of space, we will present here only some of the results repre-
sentative of the behavior of our method. Table 1 highlights some of them. We
describe these results with respect to solving times (in seconds), number of el-
ements partitioning the search space and volume covered. When no values are
given for a row, the corresponding problem was timed-out before it could actu-
ally be solved. We performed experiments on the whole benchmarks (Coconut
and MinLP Lib), but we do not show here the problems which time-out for
both methods. The first two columns provide informations about the problem:
name, number of variables |X |, and number of constraints |C|. The rest of the
table provides information on both solving methods: the number of inner boxes
(columns #I), the number of outer boxes (columns #E).

4.3 Analysis

These runs highlight one very crucial feature of our method: it is able to quickly
find boxes that contain only solutions of problems where the default solving
method fails to do so (problems aljazzaf, allintu, ex1222, gbd, ...): on the whole
benchmark, for almost 30% of the problems (58 out of 197), solving with the elim-
ination step exhibited at least one solution while the default solving method did
not succeed to do so. This comes for no time loss in average: on the whole bench-
mark, solving with elimination was slightly slower than without (1157 minutes
against 1032 minutes). In fact, 39% of the problems (39 out of 197) were solved
faster with the elimination than without (problems ex1411, mickey, ex1223a,
synthes1...). This illustrates the fact that results of the solver are more precise:
elimination avoids unnecessary splits, better identify the constraints frontiers,
and compute within the same process inner and outer approximation for no (or
little) overhead. A better analysis of the results shows that the default solv-
ing method spends time splitting variables with large ranges, while elimination

Finding solutions by finding inconsistencies 15

focuses on the shape of the constraints to locates areas than can be directly
removed from the search space and added to the solution set.

Another conclusion of the analysis of this benchmark is about the solution
coverage. The experiments show that the coverage of the solution space is signif-
icantly more accurate with the elimination step. On all of the runs, our method
always find a greater or equal inner volume than the one found by the default
method. Moreover, it also reduces the number of elements involved in the par-
tition in the same time, which means that the inner approximation is achieved
with less, bigger elements. This is shown by examples chi and mickey where
both methods achieve a 0.99 ratio of inner volume, only with elimination, we
need half the elements required by the default solving method to do so. On the
whole benchmark, on average, we need 40 times less elements to cover the same
inner volume with elimination. This property may become very handy as it al-
lows a better re-usability of the results since we need to treat fewer elements to
cover the solution space. The δ columns indicates the part of the returned ele-
ments that corresponds to an inner approximation, i.e. contains only solutions.
This ratio is always greater with the elimination step. On the whole benchmark,
the average ratio is of 0.49 of inner volume for the elimination while it is of 0.27
without. This confirms that the elimination step allows the solving process to
target more efficiently the parts of the research space that contain only solution.

These good results confirm the intuition that cutting an element according
to the constraints it does not satisfy can be more interesting than cutting it
arbitrarily regardless of the constraints. Since solvers are often used as a pre-
computation for other programs, reducing the size of their output (i.e., reducing
the number of boxes required to represent a solution at a given precision) can
be an important feature. Also, note that, by quickly identifying solutions and
removing them from the search space, the elimination step makes it possible to
carry out fewer propagation and exploration steps.

5 Conclusion

In classic continuous constraint solvers, propagation is used to remove from
the search space values that can not be solution. We presented in this paper
a new method to, symmetrically, eliminate from the search space values that
can only be solutions. This step is implemented as a classic propagation step
on the negations of constraints, from which the complement is taken; hence, we
introduced a difference operator on boxes. We have incorporated the elimination
mechanism to improve the results in terms of a qualitative and quantitative
criterion, also without a notable time overhead. This technique, which delays
a splitting heuristic that can be inaccurate, makes it possible to take better
advantage of the constraints of a problem, be reusing and adapting the same
tools as propagation, combined with a difference operator we have introduced.
Finally, it should be emphasized that, although it is implemented in a specific
solver using abstract domains, this technique can perfectly be integrated into a
more classic solver and combined with any type of propagator.

16 Ghiles Ziat, Marie Pelleau, Charlotte Truchet, and Antoine Miné

We believe that this resolution technique can be useful in many cases. For
problems or zones of non-consistent instantiations forming ”holes” in the solution
space, or more generally, when it is non-convex, it can avoid several cutting
steps by directly targeting the most relevant boundaries. This property may
be particularly interesting in the context of inner-approximation applications,
as shown by the experiments or counter-example exhibition (feasibility proving)
when it comes to find at least one solution as our method outperforms the default
solving method in that competence.

Further research includes the development of elimination beyond boxes, for
instance on polyedra which can also be defined as a conjunction of constraints,
making it possible to add a difference operator. It would also be interesting to
measure the performance of this technique with other consistency and splitting
heuristic.

References

1. Heikel Batnini, Claude Michel, and Michel Rueher. Mind the gaps: A new splitting
strategy for consistency techniques. In Proceedings of the 11th International Con-
ference on Principles and Practice of Constraint Programming (CP’05), volume
3709 of Lecture Notes in Computer Science, pages 77–91. Springer-Verlag, 2005.

2. Frédéric Benhamou. Heterogeneous constraint solvings. In Proceedings of the 5th
International Conference on Algebraic and Logic Programming, pages 62–76, 1996.

3. Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-François
Puget. Revisiting hull and box consistency. In Proceedings of the 16th International
Conference on Logic Programming, pages 230–244, 1999.

4. Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boost-
ing systematic search by weighting constraints. In Proceedings of the 16th Eureo-
pean Conference on Artificial Intelligence, (ECAI’2004), pages 146–150. IOS Press,
2004.

5. Michael R. Bussieck, Arne Stolbjerg Drud, and Alexander Meeraus. Minlplib -
A collection of test models for mixed-integer nonlinear programming. INFORMS
Journal on Computing, 15(1):114–119, 2003.

6. Gilles Chabert and Luc Jaulin. Contractor programming. Artificial Intelligence,
173:1079–1100, 2009.

7. Hélène Collavizza, François Delobel, and Michel Rueher. Extending consistent
domains of numeric CSP. In Proceedings of the 16th International Joint Conference
on Artificial Intelligence, pages 406–413, 1999.

8. Eldon Hansen. Global optimization using interval analysis. Marcel Dekker, 1992.
9. Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency for con-

straint satisfaction problems. In Proceedings of the 6th International Joint Con-
ference on Artificial intelligence (IJCAI’79), pages 356–364. Morgan Kaufmann
Publishers Inc., 1979.

10. Luc Jaulin and Eric Walter. Set inversion via interval analysis for nonlinear
bounded-error estimation. Automatica, 29(4):1053–1064, 1993.

11. Ramon Edgar Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs N. J.,
1966.

12. Marie Pelleau, Antoine Miné, Charlotte Truchet, and Frédéric Benhamou. A con-
straint solver based on abstract domains. In Proceedings of the 14th International

Finding solutions by finding inconsistencies 17

Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI
2013), 2013.

13. Dietmar Ratz. Box-splitting strategies for the interval Gauss-Seidel step in a global
optimization method. Computing, 53:337–354, 1994.

14. Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming. Elsevier Science Inc., New York, NY, USA, 2006.

15. Christian Schulte and Peter J. Stuckey. Efficient constraint propagation engines.
Transactions on Programming Languages and Systems, 31(1):2:1–2:43, December
2008.

16. Oleg Shcherbina, Arnold Neumaier, Djamila Sam-Haroud, Xuan-Ha Vu, and Tuan-
Viet Nguyen. Benchmarking global optimization and constraint satisfaction codes.
In Global Optimization and Constraint Satisfaction, First International Work-
shop Global Constraint Optimization and Constraint Satisfaction, COCOS 2002,
Valbonne-Sophia Antipolis, France, October 2-4, 2002, Revised Selected Papers,
pages 211–222, 2002.

