
Constraint-based Verification of Formation Control

Julien Alexandre dit Sandretto, Alexandre Chapoutot, Christophe Garion, Xavier Thirioux and Ghiles Ziat

Abstract— Collision-free motion planning of formation of
robots is an essential property to assess for safety purpose.
We propose in this paper a new formal verification method
based on abstract interpretation and constraint satisfaction
problems to reach this goal. We consider state of the art control
algorithms for formation maneuver to generate trajectories
for a group of robots. Additionally, bounded uncertainties
are considered to represent potential localization and measure
errors. The collision-free property is formalized using the
constraint satisfaction problem framework.

I. INTRODUCTION
Mobile robots have seen their capabilities drastically im-

prove over the years. For instance, autonomous displace-
ments are now possible in unknown environments thanks
to the huge development of SLAM algorithms [1]. Another
example is the use of multi-agent formations to increase the
efficiency of missions such as exploration [2]. In such cases,
safety properties of mobile robots, like absence of collisions
between them or with environment, have to be asserted in
order to avoid harmful scenarios.

Model-based verification uses mathematical models of
systems to verify properties on systems. Robotic systems
are usually modeled using Ordinary Differential Equations
(ODEs) to represent the dynamics of the robots. A big chal-
lenge to assert safety of such robotic systems is the capability
of taking into account uncertainties appearing in all the flow
of information treatment. For instance, perception cannot be
done without approximating sensor measures and therefore
safe robotics algorithms should take care of handling such
approximations. A probabilistic approach is usually followed
to solve this problem, for instance [3]. In this paper, we
follow a deterministic approach when considering bounded
uncertainties on the initial states of the ODEs representing
the system. Classic approaches for approximating solution of
ODEs exist and use Taylor model-based flow-pipe construc-
tions [4], [5] or Runge-Kutta methods [6], [7] to compute
over-approximation of the reachable states starting from
some initial states. In both methods, over-approximations
of states are computed based on numerical domains, i.e.,
computer representable sets, such as intervals.

In this work, a two-step approach for the verification of
safety properties of behaviors of multiple robots is proposed.
The first step consists in over-approximating the solution

This work was partially supported by the Defense Innovation Agency
(AID) of the French Ministry of Defense.

J. Alexandre dit Sandretto and A. Chapoutot are with U2IS,
ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
{alexandre,chapoutot}@ensta-paris.fr

C. Garion, X. Thirioux and G. Ziat are with ISAE-
SUPAERO, Université de Toulouse, Toulouse, France
{garion,thirioux,ziat}@isae-supaero.fr

of the ODEs representing the system using Abstraction
Interpretation theory [8]. It has been defined to study systems
through sound abstractions, considering a set of behaviors in-
stead one particular behavior, and has successfully been used
to validate for instance aircraft embedded systems [9]. The
second step consists in the resolution of a constraint satisfac-
tion problem concerning the solutions of these ODEs using
Constraint Programming [10]. The idea of mixing techniques
from Constraint Programming and Abstract Interpretation is
promising and has already been exploited, for example for
efficient constraint solving [11], [12]. The present work is
based on the abstract solving method introduced in [11].

The contribution of this paper is the definition of a new
Constraint Satisfaction Problem (CSP) approach to reason
efficiently over temporal functions, i.e., robot trajectories,
as defined in [13] which proposes a more efficient abstract
domain to handle sets of abstract elements than the powerset
abstract domain [14] or disjunctive completion [15]. The
resulting framework is used on a collision-free property for
a multi-agent formation control, previously proposed in [16].

Some previous work has focused on the resolution of
constraints involving ODEs, as [17] or [18] in which the
authors extend the iSAT algorithm with safe numerical
integration of ODEs as a constraint filtering mechanism. In
the same spirit, in [19] the authors propose a slightly adapted
filtering algorithm applied to constraints that handles ODEs.
More recently, [20] proposed a framework that is able to deal
with a wide class of problems based on logical combination
of high-level properties, involving ODEs. The present work
differs from previous ones in several ways. First, these works
are largely based on interval analysis, while our framework
based on abstract domains allows the natural management of
more complex representations (zonotopes, polyhedra, etc).
Moreover, we incorporate within our framework natural
properties of ODEs, such as their chronological and their
contiguous aspects, which allows to have more efficient
operations and, to our knowledge, has never been done yet.

This paper is organized as follows: Section II recalls the
main features of abstract interpretation, validated numerical
integration and constraint programming. The tree abstract do-
main representing robot trajectories is defined in Section III.
Verification of bearing-based formation control is given in
Section IV. Section V concludes and discusses perspectives.

II. PRELIMINARY NOTIONS

A. Brief Recall on Abstract Interpretation

Abstract Interpretation [8] is a fundamental approach to
soundly deal with safe approximations. A focus on numerical

2021 60th IEEE Conference on Decision and Control (CDC)
December 13-15, 2021. Austin, Texas



domains is considered in this paper, especially the interval
numerical abstract domain.

A safe abstraction of sets of real values is based on a Ga-
lois connection. More precisely, let 〈℘(Rn),⊆, ∅,Rn,∪,∩〉
be the lattice of subset of real values and let 〈A,v
,⊥,>,t,u〉 be a lattice of abstract values where ⊥ is
the least element, > is the greatest element, t is the join
operator and u is the meet operator. A Galois connection
is a pair of functions (α, γ) such that: (i) α : ℘(Rn) →
A is monotonic; (ii) γ : A → ℘(Rn) is monotonic;
(iii) ∀S ∈ ℘(Rn), x ∈ A, α(S) v x and S ⊆ γ(x).
The function α is called the abstraction function and the
function γ is called the concretization function. The notion
of safe abstraction is formalized either by α(S) v x or
S ⊆ γ(x). An abstract continuous function F ] is a safe
abstraction of the continuous function F \ if and only if
∀x ∈ A,

(
α ◦ F \ ◦ γ

)
(x) ⊆ F ](x). Note that the abstract

function F ] is usually a redesign of F \ defined over elements
of A. In this work, F \ will be a set of trajectories of a robot
described by an ODE. Solutions of ODE can be embedded
in abstract interpretation theory as shown in [6], so F ] will
be an interval-based trajectory of a robot.

When dealing with computations involving sets of values,
interval analysis [21] is a method designed to produce a
sound over-approximation. Sets of intervals can be associated
to order-theoretic operations and used as abstract domain in
the theory of abstract interpretation [8]. Hereafter, an interval
is denoted by [x] = [x, x] with x 6 x and the set of intervals
on R is denoted by IR = {[x] = [x, x] | x, x ∈ R, x 6
x}. The abstract function F ] will be an interval inclusion
functions [21].

B. Abstraction of ODEs

a) Problem Settings: Robots behavior can be modeled
as solution of a set of ODEs given a set of possible initial
values. More precisely, an Initial Value Problem for ODEs
(IVP) is defined by{

ẏ(t) = f(t,y(t),p),

t ∈ T := [0, tend], y(0) ∈ Y0 and p ∈ P,
(1)

with f a non-linear function f : R×Rn×Rp → Rn, a finite
time horizon [0, tend], Y0 a bounded set of initial values and
P a bounded set of parameters. Note that this implies to deal
with sets of trajectory solutions of Equation (1). We assume
here classical hypotheses on f to ensure the existence and
uniqueness of the solution of Equation (1).

The set Y(T ,Y0,P) stands for the set

Y(T ,Y0,P) = {y(t;y0,p) : t ∈ T ,y0 ∈ Y0,p ∈ P} (2)

Intuitively, Y(T ,Y0,P) gathers all the points reached by the
scalar solution y(t;y0,p) of Equation (1) starting from all
scalar initial values y0 and all scalar parameters p. Note
that Y(T ,Y0,P) is hardly computable in general. The goal
of a validated (or rigorous) numerical integration method
is therefore to characterize the set of functions satisfying
Equation (1), in the form of the values this set of functions

can reach with their associated time instants, i.e., {y(t;y0) :
∀y0 ∈ Y0,∀t ∈ [0, tend]}. A convenient way to access those
values is to use the abstract domain of intervals which uses
interval analysis to compute an over-approximation of this
set [21], [5], [6].

b) Guaranteed Numerical Integration: When consid-
ering the set of initial conditions as a box [y0], solving
Equation (1) using the interval technique framework makes
possible the design of an inclusion function [y] (t; [y0]) for
the computation of an over approximation of y(t; [y0]). To
build it, a sequence of time instants t1, . . . , ts such that
t1 < · · · < ts and a sequence of boxes [y1] , . . . , [ys]
such that [y] (ti+1; [yi]) ⊇ [yi+1] for all i ∈ [0, s− 1] are
computed. From [yi], computing the box [yi+1] is a classical
two-steps method (see [5]): (i) compute an a priori enclosure
[ỹi] of the set {y(tk;yi) | tk ∈ [ti, ti+1] ,yi ∈ [yi]} such that
y(tk; [yi]) is guaranteed to exist and is unique, (ii) compute
an enclosure of the solution [yi+1] at time ti+1. A box [yi]
is the Cartesian product of the time interval [ti−1, ti] and the
state interval [ỹi] containing all the values the trajectory can
reach during the time interval [ti−1, ti].

c) Abstraction of Boxes as Disjunction of Linear Con-
straints: The solution of an IVP-ODE which is given as a set
of timed boxes in the form {([t1] , [ỹ1]), . . . , ([tend] , [ỹend])}
can easily be translated into a disjunction of constraints since
each pair ([ti] , [ỹi]) corresponds to a quantified Boolean
proposition:

([ti] , [ỹi]) ≡ (∀t ∈ [ti])(∃y ∈ [ỹi])(y(t) = y) (3)

or defined as a constraint over the variables t and x:

([ti] , [yi]) ≡ (t ∈ [ti]) ∧ (y ∈ [yi]) (4)

where t ∈ [ti] means [ti] 6 t 6 [ti] with [ti] and [ti] the
lower and outer bounds of [ti] respectively. Eventually, the
abstraction of the set of trajectories can be modeled as a
disjunction of all the constraints from Equation (4) since at
each time t ∈ [t0, tend], y(t) must verify only one of these
constraints.

C. Constraint Satisfaction Problems

In this paper, ODEs solutions are incorporated into a
Constraint Programming framework. Constraint Program-
ming [22], [10] is a declarative programming paradigm in
which users specify the constraints of a system, generally
stated as first-order logic formulæ, and then rely on a solver,
which comes with constraint filtering mechanisms and choice
heuristics, to establish the satisfiability of the constraints.

1) Constraint Satisfaction Problem: A continuous Con-
straint Satisfaction Problem (CSP) can be defined as a triplet
〈V,D, C〉, where V = {v1, . . . , vn} is a set of variables, D =
{d1, . . . , dn} a set of domains, each one being associated to
a variable, and C = {c1, . . . , cm} is a set of constraints over
the variables.

a) Constraint Language: We consider a standard con-
straint language using a finite and fixed set V of real-valued
variables, numeric and Boolean expressions. A constraint c is
a Boolean expression whose concrete semantic corresponds



to the set of mappings, called instances, from variables to
values i for which the evaluation of c, denoted c(i), yields
true. Solving a CSP usually means to find all the instances
that satisfy every constraint of the problem. Because this
is generally impossible when the variables domains are
continuous, solvers generally compute a set of boxes (in our
case any abstract element) that covers the solution space. In
order to build this cover, such a solver alternates two main
steps: (1) filtering which reduces the domains of the variables
by removing values that cannot be solutions. (2) exploration
when the domains cannot be reduced anymore, solvers
creating then two complementary sub-problems.

As repeating these two steps in turn is not guaranteed to
terminate, this procedure continues until the search space
contains no solution, only solutions, or is smaller than some
parameter according to a size metric. We base our work on
the constraint solving framework introduced in [11] in which
a solving method based on abstract domains is introduced.

2) Abstract Domains for Constraint Solving: In [11],
the authors define operators and requirements over these
operators an abstract domain must satisfy in order to be used
in a constraint resolution scheme. The following definitions
recall these requirements.

Definition 2.1: Abstract domains for constraint solving
are given by (a) a partial order 〈D],v〉 and the usual abstract
set operators and values 〈>]

D,⊥
]
D,u],t]〉 (b) an abstraction

α and a concretization function γ along with:
• a size function τ : D] → R+

• a splitting operator on D], ⊕ : D] → P (D]),
• a constraint filtering operator ρ]D : D] × C → D] ∪
{⊥]}, which given an abstract value e and a constraint
c computes the smallest abstract value (possibly empty)
entailed by c and e.

The split operator ⊕ should respect Definition 9 of [11],
which we recall here:

Definition 2.2: A split operator has the following prop-
erties: (i) ∀d ∈ D], | ⊕ (d)| is finite (ii) ∀d ∈ D],∀di ∈
⊕(d), di @ d (iii) ∀d ∈ D], γ(d) =

⋃
{γ(di) | di ∈ ⊕(d)}

The first property is necessary to guarantee the termination
of the procedure, the second ensures that the operator actu-
ally splits, i.e., computes smaller elements than the original
one, and the last one guarantees the soundness of the solving
process, i.e., that the splitting does not lose instances. Also,
in order to have a terminating process, no infinite sequence
of splits and constraint filtering must exist, and thus, every
such finite sequence should yield an element smaller than a
given parameter with respect to τ . More formally, ⊕ and τ
must be compatible according to Definition 10 of [11]:

Definition 2.3 (Compatibility of ⊕ and τ ): The split op-
erator ⊕ and the size operator τ are compatible, iff for any
reductive operator ρ] we have:
∀d ∈ D],∀r ∈ R+,∃k, ∀i ≥ k, τ((⊕ ◦ ρ])i(d)) ≤ r

III. TREE ABSTRACTION
A. A new abstract domain for ODE

We propose a new abstraction for ODEs based on the
following principle: the solution of an ODE is first approx-

imated as the union of all time frames, using the join
operator, then is filtered using a potentially large number of
constraints. Our idea is to incorporate additional information
into the join operation that will speed up the filtering of
constraints by proposing a tree abstract domain T(D]). This
domain can be viewed as a kd-tree in which leaves are
defined using the numerical abstract domain D] and internal
nodes, also called summaries, give information about their
subtrees. Our use of summaries is similar to the one defined
in [23], but applied to a CSP framework. In particular, we
show that filtering a constraint can be made more efficiently
using the summaries information. Moreover, the fact that
ODEs are continuous objects greatly enhances the relevance
of our summaries.

Definition 3.1: Given an abstract domain 〈D], αD, γD,
tD, uD, ⊕D〉, an element t ∈ T(D]) is either (1) a leaf:
D] → T(D]), denoted by leaf(d), (2) or an union node:
D] × T(D])× T(D])→ T(D]) denoted by union(u, t1, t2)
with u = hull(t1) tD hull(t2).
hull is a summary function T(D]) → D] such that
hull(leaf(d)) = d, and hull(union(u, t1, t2)) = u. The
concretization for this representation is given by

γ(t) =

{
γD(t′), when t = leaf(t′)
γ(t1) ∪ γ(t2), when t = union(u, t1, t2)

Here, we exploit the fact that γ(d1 t d2) strictly contains
γ(d1)∪ γ(d2) to provide a summary u of what is contained
in the sub-trees t1 and t2, in the sense that γ(t1) ⊆ γD(u)∧
γ(t2) ⊆ γD(u). This can be seen as a two-level abstraction,
as u is an abstraction of both t1 and t2. This allows us to
define a fast pre-computation for the meet and the filtering
operations. We define also a partial order vT for trees such
that

t1 vT t2 , ∀l ∈ leaves(t1),∃l′ ∈ leaves(t2), l vD l′

We consider that a tree t1 is smaller than a tree t2 if each
of its leaves are smaller than one of the leaves of t2. The
auxiliary function leaves computes the set of all leaves of a
tree.

Our representation being able to encode exactly disjunc-
tions, we define the join operator as

t1 tT t2 = union(hull(t1) tD hull(t2), t1, t2)

The greater the intersection of two elements is, the more
accurate the summary is. Because of the continuous nature
of ODEs, this property is particularly interesting as two
successive elements always intersect.

For the definition of the meet operator for trees, we exploit
the summaries to benefit from a pre-computation. If two
summaries do not intersect, then the whole corresponding
trees do not either.

B. Split and Measure

To embed our abstract domain in the constraint solving
framework, we must define a split operation ⊕, along with a
measure function τ and a constraint filtering operator ρ. The
operator ⊕, given by Definition 3.2, performs a symbolic cut
when the tree is a union node, and otherwise uses ⊕D.



Definition 3.2: Split operator for T (D]) is defined by

⊕(t) =
{
{leaf(d′) | d′ ∈ ⊕D(d)}, if t = leaf(d)
{t1, t2} if t = union(u, t1, t2)

Proposition 3.1: The operator ⊕ is a split operator ac-
cording to Definition 2.2

We now define the size function τ : T(D)→ R for trees,
which is given in Definition 3.3.

Definition 3.3: Size operator is defined by

τ(e) =

{
τD(d), when e = leaf(d)
+∞ when e = union(u, t1, t2)

The splitting is done as long as there are disjunctions in the
representation and when a leaf is reached, a branching to
(τD) is performed.

Proposition 3.2: The split operator ⊕T and the size opera-
tor τT are compatible for any reductive operator ρ, according
to Definition 2.3

C. Constraint Filtering

Finally, note that fast precomputation is not only available
for the meet operation but also for the filtering of a constraint:

Definition 3.4: Given a tree t and a constraint c, the
filtering operator ρT : T(D])→ C → T(D]) is such that:

ρ(t, c) =


leaf(ρD(t′)) when t = leaf(t′)
⊥ when t = union(u, t1, t2)∧

ρ(u) = ⊥D

tT (ρ(t1), ρ(t2)) when t = union(u, t1, t2)∧
ρ(u) 6= ⊥D

Instead of filtering a constraint for each atom of a disjunction,
we do it first for their summary. If we can prove that a
summary u violates the constraint c, i.e., ∀i ∈ γD(u),¬c(i)
(resp. ∀i ∈ γD(u), c(i)), then the child elements will also
violate it. In the case where we cannot draw a definitive
conclusion, we propagate the filtering towards the sub-trees.

Proposition 3.3: The filtering operator ρ contracts and is
complete, i.e.,
• ρT (t, c) vT t (contraction)
• ∀i ∈ γT (t), c(i) =⇒ i ∈ γT (ρ(t)) (completeness)

The contraction property ensures that values are only re-
moved from the abstract element, and the completeness
property guarantees that no solution is removed from it.

The tree abstraction that has been defined in this section
exploits the continuity aspect of ODEs solutions to propose
a fast pre-computation for the filtering of a constraint and
the meet operation. It can thus be seen as an incremental
powerset, that gradually augments its precision, starting from
the precision of a base abstract domain D to the precision of
its powerset P (D) if needed only. This will greatly speed-up
the solving process in most cases.

IV. VERIFICATION OF FORMATION MANEUVER
A. Tools used

We present here the two tools used for verification of
formation maneuver.

DynIbex is used for abstraction of solutions of ODE [7]. It
is a library written in C++ using Ibex, a library for constraint

processing over real numbers. It adds a validated numerical
integration method to compute an over-approximation of the
reachable set of an ODE in a time interval. It returns a set
of timed boxes in the form {([t1] , [x̃1]), . . . , ([tend] , [x̃end])}
(and also tighter approximations at given time steps) using
Runge-Kutta methods with interval analysis.

AbSolute is a constraint solver based on abstract do-
mains [11]. It is built upon the Abstract Interpretation
framework, and features several techniques and classical
heuristic from Constraint Programming. The solver is writ-
ten in OCaml and is usable with several numeric abstract
domains (intervals, congruences, octagons, polyhedra), and
domain combinators (products), some of which are based
upon the Apron library [24]. We use AbSolute as an oracle
for DynIbex to verify if the constraints over dynamic objects
described as ODEs hold. The tree abstract domain, presented
in Section III, is implemented as plugins of AbSolute.

B. Bearing-based Formation Control

Distributed multi-agent formation control is mainly driven
by inter-neighbor relative position or distance constraints.
In recent work, the bearing-based approach has been con-
sidered (see [16]): the target formation is constrained by
inter-neighbor bearings. Indeed, bearings are invariant in
rotation, translation and scaling and therefore offer a con-
venient approach to define formation control. Nonetheless,
using bearing-based formations adds additional constraints
between robots in order to ensure expected. Moreover, in
such framework, at least two leaders have to be defined as
described in [16]. Figure 1 presents an example of square
formation with four robots in 2D plan (back centered square).

A brief review on the formation maneuver control as
defined in [16] is given. Consider n agents in Rd (n > 2 and
d > 2). Their position at time t is denoted by pi(t) ∈ Rd

with i ∈ {1, . . . , n}. Interactions between agents is described
by a graph G = (V, E) with a vertex set V = {1, . . . , n} and
an edge set E ⊆ V × V . An edge (i, j) ∈ E means that
agent i can measure the relative bearing of agent j so it is
a neighbor of Agent j. The set of all neighbors of Agent i
is denoted by Ni = {j ∈ V : (i, j) ∈ E}. Edges are not
directed: if i is a neighbor of j, then j is also a neighbor of
i. A formation denoted by G(p) is a graph G such that each
vertex i of G is associated to pi(t). The relative bearing of pj
with respect to pi is defined by eij := pj − pi, gi,j := eij

‖eij‖ ,
with ‖ . ‖ being the Euclidean norm.

Suppose the velocity of n` agents is given. Such agents are
called leaders and the rest of nf agents are called followers
(nl+nf = n). V` = {1, . . . , n`} and Vf = {n`+1, . . . , nf}
respectively stands for the index set for leaders and followers.
The dynamics of leaders and followers follows a single
integrator model

ṗi = v∗i (t) i ∈ V`
ṗi = −kp

∑
j∈Ni

Pg∗
ij
(pi(t)− pj(t))− kiξ(t) i ∈ Vf

ξ̇i =
∑
j∈Ni

Pg∗
ij
(pi(t)− pj(t)) i ∈ Vf



with v∗i (t) the leader velocity reference, g∗ij stands for the
target formation to reach by the group of robots and Pg∗

ij
=

Id − g∗ij(g
∗
ij)

T . This controller can be used to follow a
predefined plan made of different way-points.

In the following, a group of four robots will be considered
in the particular context of a square formation pattern in
2D plan. A trajectory r can be defined as a disjunction of
predicates r = (p1 ∧ t1) ∨ (p2 ∧ t2) · · · ∨ (pn ∧ tn) where
each pi represents the position of agent i at a time instant
ti. This can be understood as: the agent is either at point p1
during the time frame t1, or at position p2 during the time
frame t2, etc. This property is always true, as at least one
of its atoms will be true. When dealing with a formation of
n agents, we have to define n trajectories r1, . . . rn and the
constraint corresponding to the possible collision between
agents is expressed by (r1 ∧ r2)∨ . . . (r1 ∧ rn)∨ (r2 ∧ r3)∨
· · · ∨ (rn−1 ∧ rn).: there is a collision if two constraints
representing two trajectories are true at the same time and
therefore the global formula is true.

C. Atomic displacements

A set of atomic displacements is considered in this step
to validate the inter-agent collision-free trajectories. Three
displacements respecting the square pattern are considered:
translation, scaling and rotation. A composition of these three
displacements is performed to generate trajectories of the
different agents following bearing-based formation control.

A finite number of values for each displacement is con-
sidered: north, south, east, west direction are considered for
translation; contraction and dilation for scaling; four rotations
of the formation over the centroid are available with angles
π/4, π/2, 3π/4 and π. See Figure 1 for some examples
of displacements. In total, 108 atomic displacements can be
considered.

Fig. 1. Examples of atomic displacements combining translation, rotation
and scaling: black dots are followers and red dots are leaders, black inner
square is initial formation and blue squares are formations resulting of
atomic displacements.

Two different sources of uncertainties are considered to
check collision-free property for these atomic displacements:
uncertainties on initial positions of agents and on inter-
agent distances. This allows different scenarios with: (i) no
uncertainties; (ii) only initial position uncertainties; (iii) only
distance measure uncertainties; (iv) both initial position and
distance measure uncertainties. These scenarios try to detect
which combination of displacements can generate a collision
and the corresponding robustness w.r.t. uncertainties.

TABLE I
COLLISION-FREE CHECKING ON ATOMIC DISPLACEMENTS

T1T2 T1T3 T1T4 T2T3 T2T4 T3T4
NO 27/81 1/107 4/104 3/105 3/105 4/104
EI 0.01 27/81 1/107 8/100 9/99 3/105 17/91
EI 0.1 27/81 12/96 41/67 52/56 26/82 54/54
ED 0.01 27/81 3/105 15/93 17/91 11/97 52/56
ED 0.1 27/81 28/30 78/30 51/57 50/58 61/47
EID 0.01 27/81 4/104 25/83 28/80 15/93 54/54
EID 0.1 27/81 36/72 91/17 68/40 55/53 68/40

A summary of the verification of collision-free property
on atomic displacements is given in Table I. In this table,
No stands for no uncertainty, EI stands for uncertainty
on initial conditions, ED stands for uncertainty on distance
measure and EID stands for uncertainties on both initial
position and distance measures. Two values are considered
for uncertainties, namely 0.01 and 0.1. The number of
satisfiable and unsatisfiable problems (read SAT/UNSAT) is
reported for each scenario and each pair of trajectory between
agents (T1T2 stands for trajectory of agent 1 and agent 2).
An UNSAT scenario means that no collision have been found
and so the atomic displacement is safe while a SAT scenario
implies that a potential collision has been found.

Looking at this experimental evaluation of the bearing-
based formation control, we note that increasing uncertainties
increases the number of possible collisions. More precisely,
rotations of pi has to be avoid as it generates most of the
possible collisions with or without uncertainty considered.
Once the uncertainty is 0.1, atomic displacements including
rotations of π, 3π/4 or π/2 generates collisions when
combined with other displacements. In consequence, a global
planning of a bearing-based formation should consider to
perform rotations only when necessary (especially of angle
1/4π) and not a combination with other kinds of displace-
ments to avoid collisions.

D. Complete mission

A path following mission is considered in this section, for
which a sequence of atomic displacements is defined to reach
a target position. Two scenarios have been considered:
• the first scenario considers way-points corresponding to

atomic displacements merging scaling, translation and
rotation together. In this scenario, 11 way-points have
been defined. The simulation result is given in Figure 2
considering no uncertainty;

• the second scenario considers way-points corresponding
to either a pure rotation or a possible combination of
scaling and translation. In this scenario, 14 way-points
have been defined. The simulation result is given in
Figure 3 considering no uncertainty.

Applying the proposed method to detect collision on
Scenario 1 found a possible collision at time t = 40.3012s
between the trajectories of agent 2 and agent 3 (at coordinates
x = 75.3000150552 and y = −24.3395564986). This
collision may happen during the second atomic displacement
merging rotation and other displacements between way-

 



Fig. 2. Path following mission, scenario 1 way-points associated to
all possible atomic displacements together. In particular way point 7 is
a rotation, a scaling reduction and a translation. No uncertainties are
considered.

Fig. 3. Path following mission, scenario 2 way points associated to
pure rotation or translation/scaling displacements. No uncertainties are
considered. More complex trajectories are generated but without collision.

points 7 and 8. No collision is found in Scenario 2 when
rotations have been considered alone for the definition of
atomic displacements. Increasing the uncertainties on initial
position and measure distances on Scenario 2 implies pos-
sible collisions during rotation displacements. Our proposed
method can then be used to validate global path for robot
formation by asserting the absence of inter-agent collisions.

V. CONCLUSION

We have shown that it is possible to validate forma-
tion control using techniques from different areas, namely
Constraint Programming, Abstract Interpretation and Interval
Analysis. Our work can be summarized in two parts: a) a
correct over-approximation of the reachability states of sets
of ODEs, and b) a resolution of constraint satisfaction prob-
lems implying such ODEs. For the latter, we have defined an
abstract domain able to take advantage of the characteristics
of ODE solutions, particularly their continuous nature. We
have demonstrated the usefulness of our techniques on a
realistic application implying the absence of collisions in a
formation of robots.

The work we have done may be deepened in several ways:
it could be effective to use some more expressive abstract
domains for the nodes than for the leaves (e.g., relational
representation like polyhedra for nodes and intervals for
leaves) to minimize the loss of precision due to join op-
eration, and thus further improve the capabilities of our tree
abstract domain. Moreover, the framework presented could
also be used to define a global planner for formation control
algorithm based on [25] on switched systems.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Towards the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, p. 1309–1332, 2016.

[2] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, no. C, p. 424–440, 2015.

[3] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

[4] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An ana-
lyzer for non-linear hybrid systems,” in Computer Aided Verification.
Springer, 2013, pp. 258–263.

[5] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss, “Validated solutions
of initial value problems for ordinary differential equations,” Applied
Mathematics and Computation, vol. 105, no. 1, pp. 21–68, 1999.

[6] O. Bouissou and M. Martel, “Abstract interpretation of the physical
inputs of embedded programs,” in Proc. of Verification, Model Check-
ing, and Abstract Interpretation. Springer, 2008.

[7] J. Alexandre dit Sandretto and A. Chapoutot, “Validated explicit and
implicit Runge–Kutta methods,” Reliable Computing, vol. 22, no. 1,
pp. 79–103, 07 2016.

[8] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proc. of Symposium on Principles of Programming
Languages. ACM Press, 1977, pp. 238–252.

[9] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival, “A static analyzer for large safety-
critical software,” in Conference on Programming Language Design
and Implementation. ACM Press, 2003.

[10] F. Rossi, P. Beek, and T. Walsh, Handbook of constraint programming.
Elsevier, 2006.

[11] M. Pelleau, A. Miné, C. Truchet, and F. Benhamou, “A constraint
solver based on abstract domains,” 01 2013.

[12] M. Pelleau, C. Truchet, and F. Benhamou, “The octagon abstract
domain for continuous constraints,” Constraints, vol. 19, no. 3, pp.
309–337, 2014.

[13] G. Ziat, O. Mullier, J. A. d. Sandretto, C. Garion, A. Chapoutot,
and X. Thirioux, “Abstract domains for constraint programming with
differential equations,” in NSAD 2020: Proceedings of the 9th ACM
SIGPLAN International Workshop on Numerical and Symbolic Ab-
stract Domains. Virtual USA, France: ACM, 2020.

[14] G. Filé and F. Ranzato, “The powerset operator on abstract interpre-
tations,” Theoretical Computer Science, vol. 222, no. 1, 1999.

[15] P. Cousot and R. Cousot, “Systematic design of program analysis
frameworks,” in Proc. of Symposium on Principles of Programming
Languages. ACM Press, 1979.

[16] S. Zhao and D. Zelazo, “Bearing-based formation stabilization with
directed interaction topologies,” 54th IEEE Conference on Decision
and Control, pp. 6115–6120, 2015.

[17] J. Cruz and P. Barahona, “Constraint satisfaction differential prob-
lems,” 09 2003, pp. 259–273.

[18] A. Eggers, M. Fränzle, and C. Herde, “Application of constraint
solving and ode-enclosure methods to the analysis of hybrid systems,”
AIP Conference Proceedings, vol. 1168, 09 2009.

[19] A. Goldsztejn, O. Mullier, D. Eveillard, and H. Hosobe, “Including
ordinary differential equations based constraints in the standard CP
framework,” in Proc. of Principles and Practice of Constraint Pro-
gramming. Springer, 2010, pp. 221–235.

[20] J. Alexandre dit Sandretto, A. Chapoutot, and O. Mullier, Constraint-
Based Framework for Reasoning with Differential Equations.
Springer, 2018, pp. 23–41.

[21] R. E. Moore, Interval Analysis. Prentice Hall, 1966.
[22] U. Montanari, “Networks of constraints: fundamental properties and

applications to picture processing,” Information Science, vol. 7, no. 2,
pp. 95–132, 1974.

[23] A. Becchi and E. Zaffanella, “Revisiting polyhedral analysis for hybrid
systems,” in Proc. of Static Analysis Symposium. Springer, 2019.

[24] B. Jeannet and A. Miné, “Apron: A library of numerical abstract do-
mains for static analysis,” in Proc. of the 21th International Conference
Computer Aided Verification, 2009.

[25] A. Le Coënt, J. Alexandre dit Sandretto, A. Chapoutot, and L. Fri-
bourg, “An improved algorithm for the control synthesis of nonlin-
ear sampled switched systems,” Formal Methods in System Design,
vol. 53, no. 3, pp. 363–383, 2018.


